Mobile robots use is rising every day. Path planning algorithms are needed to make a traveler of robots with the least cost and without collisions. Many techniques have been developed in path planning for mobile robot worldwide, however, the most commonly used techniques are presented here for further study. This essay aims to review various path planning strategies for mobile robots using different optimization methods taken recent publisher’s paper in last five year.
This paper presents an intelligent control strategy based on internal model control (IMC) to control nonlinear systems. In particular, a wavelet neural network (WNN)-based nonlinear autoregressive moving average (NARMA-L2) network is used to acquire the forward dynamics of the controlled system. Subsequently, the control law can be directly derived. In this approach, a single NARMA-L2 with only one training phase is required. Hence, unlike other related works, this design approach does not require an additional training phase to find the model inversion. In the literature, gradient descent methods are the most widely applied training techniques for the neural network-based IMC. However, these methods are characterized by the slow convergence speed and the tendency to get trapped at local minima. To avoid these limitations, the newly developed modified micro-artificial immune system (modified Micro-AIS) is employed in this work to train the NARMA-L2. The simulation results have demonstrated the effectiveness of the proposed approach in terms of accurate control and robustness against external disturbances. In addition, a comparative study has shown the superiority of the WNN over the multilayer perceptron and the radial basis function based IMC. Moreover, compared with the genetic algorithm, the modified Micro-AIS has achieved better results as the training method in the IMC structure.
The grain drying process is characterized by its complex and non-linear nature. As a result, conventional control system design cannot handle this process appropriately. This work presents an intelligent control system for the grain drying process, utilizing the capabilities of the adaptive neuro-fuzzy inference system (ANFIS) to model and control this process. In this context, a laboratory-scale conveyor-belt grain dryer was specifically designed and constructed for this study. Utilizing this dryer, a real-time experiment was conducted to dry paddy (rough rice) grains. Then, the input-output data collected from this experiment were presented to an ANFIS network to develop a control-oriented dryer model. As the main controller, a simplified proportional-integral-derivative (PID)-like ANFIS controller is utilized to control the drying process. A real-coded genetic algorithm (GA) is used to train this controller and to find its scaling factors. From the robustness tests and a comparative study with a genetically tuned conventional PID controller, the simplified ANFIS controller has proved its remarkable ability in controlling the grain drying process represented by the developed ANFIS model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.