Using a generalized Madelung transformation, we derive the hydrodynamic representation of the Dirac equation in arbitrary curved space-times coupled to an electromagnetic field. We obtain Dirac–Euler equations for fermions involving a continuity equation and a first integral of the Bernoulli equation. Comparing between the Dirac and Klein–Gordon equations we obtain the balance equation for fermion particles. We also use the correspondence between fermions and bosons to derive the hydrodynamic representation of the Weyl equation which is a chiral form of the Dirac equation.
Using a generalized Madelung transformation, we derive the hydrodynamic representation of the Dirac equation in arbitrary curved space-times coupled to an electromagnetic field. We obtain Dirac-Euler equations for fermions involving a continuity equation and a first integral of the Bernoulli equation. Using the comparison of the Dirac and Klein-Gordon equations we obtain the balance equation for fermion particles. We also use the correspondence between fermions and bosons to derive the hydrodynamic representation of the Weyl equation which is a chiral form of the Dirac equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.