Abstract-In the credit card scoring and loans management, the prediction of the applicant's future behavior is an important decision support tool and a key factor in reducing the risk of Loan Default. A lot of data mining and classification approaches have been developed for the credit scoring purpose. For the best of our knowledge, building a credit scorecard by analyzing the textual data in the application form has not been explored so far. This paper proposes a comprehensive credit scorecard model technique that improves credit scorecard modeling though employing textual data analysis. This study uses a sample of loan application forms of a financial institution providing loan services in Yemen, which represents a real-world situation of the credit scoring and loan management. The sample contains a set of Arabic textual data attributes defining the applicants. The credit scoring model based on the text mining pre-processing and logistic regression techniques is proposed and evaluated through a comparison with a group of credit scorecard modeling techniques that use only the numeric attributes in the application form. The results show that adding the textual attributes analysis achieves higher classification effectiveness and outperforms the other traditional numerical data analysis techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.