The emergence of new pathogenic viral strains is a constant threat to global health, with the new coronavirus strain COVID-19 as the latest example. COVID-19, caused by the SARS-CoV-2 virus has quickly spread around the globe. This pandemic demands rapid development of drugs and vaccines. Plant-based vaccines are a technology with proven viability, which have led to promising results for candidates evaluated at the clinical level, meaning this technology could contribute towards the fight against COVID-19. Herein, a perspective in how plant-based vaccines can be developed against COVID-19 is presented. Injectable vaccines could be generated by using transient expression systems, which offer the highest protein yields and are already adopted at the industrial level to produce VLPs-vaccines and other biopharmaceuticals under GMPC-processes. Stably-transformed plants are another option, but this approach requires more time for the development of antigen-producing lines. Nonetheless, this approach offers the possibility of developing oral vaccines in which the plant cell could act as the antigen delivery agent. Therefore, this is the most attractive approach in terms of cost, easy delivery, and mucosal immunity induction. The development of multiepitope, rationally-designed vaccines is also discussed regarding the experience gained in expression of chimeric immunogenic proteins in plant systems.
Mucosal vaccines constitute an advantageous immunization approach to achieve broad immunization against widespread diseases; however, improvements in this field are still required to expand their exploitation. As gold nanoparticles are biocompatible and can be easily functionalized with antigens, they have been proposed as carriers for the delivery of vaccines. The study of gold nanoparticles (AuNPs) in vaccinology has been of interest for a number of research groups in recent years and important advances have been made. This review provides a summary of the AuNPs synthesis methodologies and an updated overview of the current AuNPs-based vaccines under development. The implications of these advances for the development of new mucosal vaccines as well as future prospects for the field are discussed.
The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.