SARS‐CoV‐2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID‐19). The type I interferon (IFN) pathway is of particular importance for anti‐viral defence and recent studies identified that type I IFNs drive early inflammatory responses to SARS‐CoV‐2. Here, we use a mouse model of SARS‐CoV‐2 infection, facilitating viral entry by intranasal recombinant Adeno‐Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN‐signalling‐deficient ( Ifnar1 –/– ) mice, to study type I IFN signalling deficiency and innate immune responses during SARS‐CoV‐2 infection. Our data show that type I IFN signaling is essential for inducing anti‐viral effector responses to SARS‐CoV‐2, control of virus replication and to prevent enhanced disease. Furthermore, hACE2‐Ifnar1 –/– mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as a reduced and delayed production of monocyte‐recruiting chemokine CCL2. hACE2 ‐ Ifnar1 –/‐ mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS‐CoV‐2 infection, with a shift from Ly6C + to Ly6C – expressing cells. Together, our findings suggest that type I IFN deficiency results in a dysregulated innate immune response to SARS‐CoV‐2 infection. This article is protected by copyright. All rights reserved
BackgroundThe COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines.AimsWe hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age.MethodsWe developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs.ConclusionsA single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.
Respiratory syncytial virus (RSV) infection is a common cause of hospitalisation in infants and the elderly. Palivizumab prophylaxis is the only approved treatment modality but is costly and only offered to select vulnerable populations. Here, we investigated gene delivery approaches via recombinant adeno-associated virus (rAAV2/8) and simian immunodeficiency virus (rSIV.F/HN) vectors to achieve sustained in vivo production of palivizumab in a murine model. Delivery of palivizumab-expressing vectors 28 days prior to RSV challenge resulted in complete protection from RSV-induced weight loss. This approach offers prophylaxis against RSV infection, allowing for wider use and reduction in treatment costs in vulnerable populations.
Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0–30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.