This paper presents results from a methane (CH 4 ) gas emission characterization survey conducted at the Loma Los Colorados landfill located 60 km from Santiago, Chile. The landfill receives approximately 1 million metric tons (t) of waste annually, and is equipped with leachate control systems and landfill gas collection systems. The collected leachate is recirculated to enable operation of the landfill as a bioreactor. For this study, conducted between April and July 2000, a total of 232 surface emission measurements were made over the 23-ha surface area of the landfill. The average surface flux rate of CH 4 emissions over the landfill surface was 167 g ⅐ m Ϫ2 ⅐ day
Ϫ1, and the total quantity of surface emissions was 13,320 t/yr. These values do not include the contribution made by "hot spots," originating from leachate pools caused by "daylighting" of leachate, that were identified on the landfill surface and had very high CH 4 emission rates. Other point sources of CH 4 emissions at this landfill include 20 disconnected gas wells that vent directly to the atmosphere. Additionally, there are 13 gas wells connected to an incinerator responsible for destroying 84 t/yr of CH 4 . The balance also includes CH 4 that is being oxidized on the surface of the landfill by methanotrophic bacteria. Including all sources, except leachate pool emissions, the emissions were estimated to be 14,584 t/yr CH 4 . It was estimated that less than 1% of the gas produced by the decomposition of waste was captured by the gas collection system and 38% of CH 4 generated was emitted to the atmosphere through the soil cover.
Proofs of localization for random Schrödinger operators with sufficiently regular distribution of the potential can take advantage of the fractional moment method introduced by Aizenman–Molchanov [Commun. Math. Phys. 157(2), 245–278 (1993)] or use the classical Wegner estimate as part of another method, e.g., the multi-scale analysis introduced by Fröhlich–Spencer [Commun. Math. Phys. 88, 151–184 (1983)] and significantly developed by Klein and his collaborators. When the potential distribution is singular, most proofs rely crucially on exponential estimates of events corresponding to finite truncations of the operator in question; these estimates in some sense substitute for the classical Wegner estimate. We introduce a method to “lift” such estimates, which have been obtained for many stationary models, to certain closely related non-stationary models. As an application, we use this method to derive Anderson localization on the 1D lattice for certain non-stationary potentials along the lines of the non-perturbative approach developed by Jitomirskaya–Zhu [Commun. Math. Physics 370, 311–324 (2019)] in 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.