Stand-alone sand screen (SAS) is proven to be effective for sand control in unconsolidated sands in thermal wells. The characteristic design parameter to specify SAS is the aperture size, while the Open to Flow Area (OFA) is chosen to balance between the mechanical integrity of the screen, the completion cost, and the plugging risk. The objective of this study is to compare the performance of common SAS types for a certain geological condition. A series of three-phase large-scale sand retention tests (SRTs) is performed on slotted liner, wire-wrapped screen, and punched screen coupons. The tests are performed using two common representative PSDs of the McMurray Formation. The test matrix includes the common aperture sizes and OFA for each screen and PSD based on the current best practices in the industry. The test procedure is designed to mimic the near wellbore flow velocities, with three-phase flow ranging from 0%-100% water cut and produced gas-oil ratio ranging from 0-277 scf/bbl. The gas flow was supposed to simulate the steam breakthrough incidents. Live measurements are obtained of the sanding amount and pressure drops along the sand-pack and across the screen. Screen plugging is assessed after the completion of each test. The sanding and flow performance are shown to be a function of the aperture size, PSD, near-wellbore flow velocities, and the water cut. In low fluid flow rates, all the screen types show minimal pressure drops and perform similarly. As near-wellbore velocities increase or gas flow occurs, pressure drops show a significant increase for all devices. Results show OFA, aperture size, and screen type affect the pressure drop and sanding. In all cases, the produced sand in three-phase flow is the determining design parameter for the upper-bound acceptable aperture. The gas flow is observed to accompany large amounts of sanding for larger aperture sizes. Further, test results indicate high pressure drops for three-phase flow conditions. Test results reveal the complexity of the interaction between different design parameters, which affect the sand and flow performance, hence, necessitating an SRT test for each specific case. This paper presents the results of physical model testing of different standalone screens in terms of flow performance and sand control. This will help to identify the main factors that influence the performance of each specific screen type and develop the rationale for the screen type selection in new developments.
This paper presents a critical review of current evaluation techniques for the selection and design of sand control devices (SCD) for Steam Assisted Gravity Drainage (SAGD) wells. With the industry moving towards exploiting more difficult reservoirs, there is a need to review the current testing methods and assess their adequacy for sand control evaluation for different operational and geological conditions. In addition to a critical review of existing sand control testing approaches for SAGD, the paper also discusses the testing parameters in previous studies to evaluate their representativeness of the field conditions in terms of interstitial seepage and viscous forces, and flow geometry. Moreover, the paper reviews the analysis and results of sand control testing in the literature and assesses the sand control design criteria in terms of the level of acceptable sand production and plugging. Furthermore, the review evaluates the suitability of the sample size, sand preparation techniques, representation of the SCD in the testing, and experimental procedures. The review shows variations in the existing sand control testing in SAGD, in terms of not only approach, sand control representation, and sample size, but also regarding operational test conditions, such as flow rates and pressures. Ideally, large-scale pre-packed tests that include the effects of temperature and radial flow geometry would more closely emulate the actual conditions of SAGD wells than most existing tests allow. High temperatures may affect sanding and plugging through changes in wettability, permeabilities, and mineral alterations. Further, the varying velocity profile in radial flow towards the SCD influences the fines migration pattern differently from the linear-flow conditions in the existing Sand Retention Tests (SRT). However, large-scale radial-flow tests are constrained by cost and complexity. Most SRT experiments have employed high flow rates, exceeding the equivalent field rates. Utilizing realistic rates for the tests and appropriately capturing the actual fluids ratios, water cuts and steam breakthrough scenarios can improve the quality of testing data. Accordingly, existing SRT experiments can be designed to incorporate, if not all, but some of the relevant physics in SAGD by employing representative viscosities, flow rates, fluid properties and ratios, stress conditions and obtain suitable live and post-mortem measurements. This critical review compiles various aspects of current sand retention tests and evaluates their applicability to SAGD well conditions. It serves as a starting point for future research by providing an overview of existing testing methods, highlighting the strengths and opportunities for improvements.
In Steam Assisted Gravity Drainage (SAGD) projects, it is essential to heat the reservoir evenly to minimize the potential for the localized steam breakthrough. Steam breakthrough can cause erosive damage to the sand control liner by the flow of high-velocity wet steam, and, in extreme cases, can compromise the mechanical integrity of the liner. This research investigates the sanding mechanism during the high-quality steam injection into the SAGD production wells. A large-scale Sand Retention Test (SRT) was used to investigate the role of steam breakthrough in the sand control performance. Produced sand and pressure drops along the sand-pack were the main measurements during the tests. The test procedure and test matrix were designed to enable the examination of the impact of steam breakthrough on sand production for different steam rates. Two possible sanding mechanisms are postulated in steam breakthrough events: (1) local grain disturbance caused by the high-velocity steam near the liner, (2) effect of the complex phase behavior of the steam and the subcool level. Two different testing procedures were designed to examine these mechanisms. The local grain disturbance mechanism was investigated by injecting air at a wide range of velocities. Results indicate that this mechanism could not lead to a significant sanding when there is a bit of effective stress near the liner. Hence, it looks like that the steam velocity poses a higher risk in early stages of SAGD production when the near-liner stress is very low. The effect of high-pressure high-temperature (HPHT), low- to high-quality steam flow and the subcool level will be investigated in the next phase of the study. This work addresses the effect of high-quality steam breakthrough on the sand control performance of the liner in SAGD producer wells. The findings in this paper help the researchers to direct their research to better understand the steam breakthrough. This research will eventually help the engineers in their liner design and evaluation for the entire wellbore life cycle as the near-well stress evolves.
Sand control screens (SCD) have been widely installed in wells producing bitumen from unconsolidated formations. The screens are typically designed using general rules-of-thumb. The sand retention testing (SRT) technique has gained attention from the industry for the custom design and performance assessment of SCD. However, the success of SRT experimentation highly depends on the accuracy of the experimental design and variables. This work examines the impact of the setup design, sample preparation, near-wellbore stress conditions, fluid flow rates, and brine chemistry on the testing results and, accordingly, screen design. The SRT experiments were carried out using the replicated samples from the McMurray Formation at Long Lake Field. The results were compared with the test results on the original reservoir samples presented in the literature. Subsequently, a parametric study was performed by changing one testing parameter at a test, gradually making the conditions more comparable to the actual wellbore conditions. The results indicate that the fluid flow rate is the most influential parameter on sand production, followed by the packing technique, stress magnitude, and brine salinity level. The paper presents a workflow for the sand control testing procedure for designing the SCD in the steam-assisted gravity drainage (SAGD) operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.