Inhaled titanium dioxide (TiO2) nanoparticles (NPs) can have negative health effects, and have been shown to cause respiratory tract cancer in rats. Inflammation has been linked to oxidative stress, and both have been described as possible mechanisms for genotoxicity of NPs, but rarely examined side-by-side in animal studies. In the present study, a wide range of complementary endpoints have been performed to study TiO2 P25 NP-induced genotoxicity in lung overload and non-overload conditions. Additionally, lung burden, inflammation, cytotoxicity and oxidative stress have also been evaluated in order to link genotoxicity with these responses. To assess quick and delayed responses after recovery, endpoints were evaluated at two time points: 2 h and 35 days after three repeated instillations. This study confirmed the previously described lung overload threshold at approximately 200-300 cm2 of lung burden for total particle surface area lung deposition or 4.2 µl/kg for volume-based cumulative lung exposure dose, above which lung clearance is impaired and inflammation is induced. Our results went on to show that these overload doses induced delayed genotoxicity in lung, associated with persistent inflammation only at the highest dose. The lowest tested doses had no toxicity or genotoxicity effects in the lung. In blood, no lymphocyte DNA damage, erythrocytes chromosomal damage or gene mutation could be detected. Our data also demonstrated that only overload doses induced liver DNA lesions irrespective of the recovery time. Tested doses of TiO2 P25 NPs did not induce glutathione changes in lung, blood or liver at both recovery times.
Specific information about the particle size distribution, agglomeration state, morphology, and chemical composition of four silica samples, used as additives in food and in personal care products, were achieved with a combination of analytical techniques. The combined use of differential centrifugal sedimentation (DCS), sedimentation field flow fractionation (SdFFF), and scanning and transmission electron microscopy (SEM and TEM) allows to classify the water dispersed samples as "nanomaterials" according to the EC definition. The mechanical stirring and the ultrasound treatment were compared as dispersion methods. The particle surface chemical composition, determined by particle-induced X-ray emission (PIXE) and X-ray photoelectron spectroscopy (XPS), assessed the different levels of purity between the pyrogenic and the precipitated silica and highlighted particle surface chemical composition modifications in the outer shell when dispersed by mechanical stirring. The potential toxic effects of silica on intestinal Caco-2 cells were investigated using MTS assay and by measuring lactate dehydrogenase (LDH) release and caspases 3/7 activity after 24 h of incubation. No or limited decrease of cell viability was observed for all particles regardless of dispersion procedure, suggesting a relative innocuity of these silica samples.
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca 2+ uptake dynamics through the mitochondrial Ca 2+ uniporter (MCU) complex. In particular, Ca 2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca 2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca 2+ pore channel, the MCU subunit, its intra-and extra-mitochondrial implications, including Ca 2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.