Coronary Artery Disease (CAD) is one of the leading causes of death worldwide, and so it is very important to correctly diagnose patients with the disease. For medical diagnosis, machine learning is a useful tool; however features and algorithms must be carefully selected to get accurate classification. To this effect, three feature selection methods have been used on 13 input features from the Cleveland dataset with 297 entries, and 7 were selected. The selected features were used to train three different classifiers, which are SVM, Naïve Bayes and KNN using 10-fold cross-validation. The resulting models evaluated using Accuracy, Recall, Specificity and Precision. It is found that the Naïve Bayes classifier performs the best on this dataset and features, outperforming or matching SVM and KNN in all the four evaluation parameters used and achieving an accuracy of 84%.
In this work, we introduce a spatially transformed DenseNet architecture for transformation invariant classification of cancer tissue. Our architecture increases the accuracy of the base DenseNet architecture while adding the ability to operate in a transformation invariant way while simultaneously being simpler than other models that try to provide some form of invariance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.