Background. Patients on kidney replacement therapy comprise a vulnerable population and may be at increased risk of death from coronavirus disease 2019 (COVID-19). Currently, only limited data are available on outcomes in this patient population. Methods. We set up the ERACODA (European Renal Association COVID-19 Database) database, which is specifically designed to prospectively collect detailed data on kidney transplant and dialysis patients with COVID-19. For this analysis, patients were included who presented between 1 February and 1 May 2020 and had complete information available on the primary outcome parameter, 28-day mortality. Results. Of the 1073 patients enrolled, 305 (28%) were kidney transplant and 768 (72%) dialysis patients with a mean age of 60 ± 13 and 67 ± 14 years, respectively. The 28-day probability of death was 21.3% [95% confidence interval (95% CI) 14.3–30.2%] in kidney transplant and 25.0% (95% CI 20.2–30.0%) in dialysis patients. Mortality was primarily associated with advanced age in kidney transplant patients, and with age and frailty in dialysis patients. After adjusting for sex, age and frailty, in-hospital mortality did not significantly differ between transplant and dialysis patients [hazard ratio (HR) 0.81, 95% CI 0.59–1.10, P = 0.18]. In the subset of dialysis patients who were a candidate for transplantation (n = 148), 8 patients died within 28 days, as compared with 7 deaths in 23 patients who underwent a kidney transplantation <1 year before presentation (HR adjusted for sex, age and frailty 0.20, 95% CI 0.07–0.56, P < 0.01). Conclusions. The 28-day case-fatality rate is high in patients on kidney replacement therapy with COVID-19 and is primarily driven by the risk factors age and frailty. Furthermore, in the first year after kidney transplantation, patients may be at increased risk of COVID-19-related mortality as compared with dialysis patients on the waiting list for transplantation. This information is important in guiding clinical decision-making, and for informing the public and healthcare authorities on the COVID-19-related mortality risk in kidney transplant and dialysis patients.
Background COVID-19 has exposed hemodialysis patients and kidney transplant recipients to an unprecedented life-threatening infectious disease raising concerns about kidney replacement therapy (KRT) strategy during the pandemic. The present study investigated the association of type of KRT with COVID-19 severity adjusting for differences in individual characteristics. Methods Data on kidney transplant recipients and hemodialysis patients diagnosed with COVID-19 between February 1st and December 1st 2020 were retrieved from ERACODA. Cox regression models adjusted for age, sex, frailty and comorbidities were used to estimate hazard ratios (HR) for 28-day mortality risk in all patients and in the subsets who were tested because of symptoms Results In total, 1,670 patients (496 functional kidney transplant and 1,174 hemodialysis) were included. 16.9% of kidney transplant and 23.9% of hemodialysis patients died within 28 days of presentation. The unadjusted 28-day mortality risk was 33% lower in kidney transplant recipients compared with hemodialysis patients (HR: 0.67, 95%CI: 0.52-0.85). In a fully adjusted model, the risk was 78% higher in kidney transplant recipients (HR: 1.78, 95%CI: 1.22-2.61) compared with hemodialysis patients. This association was similar in patients tested because of symptoms (fully adjusted model HR: 2.00, 95%CI: 1.31-3.06). This risk was dramatically increased during the first post-transplant year. Results were similar for other endpoints (e.g. hospitalization, ICU admission, mortality beyond 28 days) and across subgroups. Conclusions Kidney transplant recipients had a greater risk of a more severe course of COVID-19 compared with hemodialysis patients; they therefore require specific infection mitigation strategies.
Epidemiological studies provide useful information for clinical practice and investigations. This report aimed to determine glomerular diseases frequencies in a region of Morocco. All native renal biopsies (January 2000 to December 2007) on adults were reviewed, but only glomerular diseases were analyzed. The diagnosis of each case was based on histological, immunopathological and clinical features. We have performed 171 renal biopsies in 161 patients (101 males and 60 females), the mean age was (range) 40.4 ±15 years (16–72). Clinical indications that lead to renal biopsy were: nephrotic syndrome (60.3%), renal failure of unknown aetiology (31.6%), asymptomatic urinary abnormalities (6.2%) and nephritic syndrome(1.9%). Primary glomerular diseases were reported in 84 patients (52%). The most common histological lesion was minimal change disease (26%). Idiopathic membranous glomerulopathy was the second most common lesion (23%) followed by membranoproliferative glomerulonephritis (17%), IgA nephropathy (12%), focal and segmental glomerulosclerosis (9.4%) and crescentic glomerulonephritis (6%). Secondary glomerular diseases were reported in 53 patients (33%). Lupus nephritis was the secondary glomerular disease most frequent (45%) followed by amyloïdosis (19%), diabetic nephropathy (15%), and Good pasture's syndrome (7.6%). The most common complications of the procedure were pain at biopsy site in 4%, gross hematuria in 11.1%, perirenal hematoma in 5% and hematuria requiring nephrectomy in 0.6% patients. Minimal change disease was the most frequent primary glomerulopathy and lupus nephritis was the most frequent secondary glomerulopathy in our group. The reasons for these findings are unclear. This information is an important contribution to the understanding the prevalence of renal diseases in North Africa.
The availability of hemodialysis machines equipped with online clearance monitoring (OCM) allows frequent assessment of dialysis efficiency and adequacy without the need for blood samples. Accurate estimation of the urea distribution volume (V) is required for Kt/V calculated from OCM to be consistent with conventional blood sample-based methods. A total of 35 patients were studied. Ionic dialysance was measured by conductivity monitoring. The second-generation Daugirdas formula was used to calculate the Kt/V single-pool (Kt/VD). Values of V to allow comparison between OCM and blood-based Kt/V were determined using Watson formula (VWa), bioimpedance spectroscopy (Vimp), and blood-based kinetic data (Vukm). Comparison of Kt/Vw ocm calculated by the ionic dialysance and Vw (Kt/Vw ocm) with Kt/VD shows that using VW leads to significant systematic underestimation of dialysis dose by 24%. Better agreement between Kt/V ocm and Kt/VD was observed when using Vimp and Vukm. Bio-impedancemetry and the indirect method using the second-generation Daugirdas equation are two methods of clinical interest for estimating V to ensure greater agreement between OCM and blood-based Kt/V.
Diffusive clearance depends on blood (Qb) and dialysate flow (Qd) rates and the overall mass transfer area coefficient (KoA) of the dialyzer. In this article we describe a model to predict an appropriated AutoFlow (AF) factor (AF factor = Ratio Qd/Qb), that is able to provide adequate Kt/V for hemodialysis patients (HDP), while consuming lower amounts of dialysate, water and energy during the treatment. We studied in vivo the effects of three various Qd on the delivered dose of dialysis in 33 stable HDP. Hemodialysis was performed at Qd of 700 mL/mn, 500 mL/mn, and with AF, whereas specific dialysis prescriptions (treatment time, blood flow rate [Qb], and type and size of dialyzer) were kept constant. The results showed that increasing the dialysate flow rate more than the model of AF predicted had a small effect on the delivered dose of dialysis. The Kt/V (mean ± SD) was 1.52 ± 0.16 at Qd 700, 1.50 ± 0.16 at Qd 500, and 1.49 ± 0.15 with AF. The use of the AF function leads to a significant saving of dialysate fluid. The model predicts the appropriate AF factor that automatically adjusts the dialysate flow rate according to the effective blood flow rate of the patient to achieve an appreciable increase in dialysis dose at the lowest additional cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.