In this paper, we analyze existing feature selection methods to identify the key elements of network traffic data that allow intrusion detection. In addition, we propose a new feature selection method that addresses the challenge of considering continuous input features and discrete target values. We show that the proposed method performs well against the benchmark selection methods. We use our findings to develop a highly effective machine learning-based detection systems that achieves 99.9% accuracy in distinguishing between DDoS and benign signals. We believe that our results can be useful to experts who are interested in designing and building automated intrusion detection systems.
<span lang="EN-US">A neural network-based parking system with real-time license plate detection and vacant space detection using hyper parameter optimization is presented. When number of epochs increased from 30, 50 to 80 and learning rate tuned to 0.001, the validation loss improved to 0.017 and training object loss improved to 0.040. The model mean average precision mAP_0.5 is improved to 0.988 and the precision is improved to 99%. The proposed neural network-based parking system also uses a regularization technique for effective predictive modeling. The proposed modified lasso ridge elastic (LRE) regularization technique provides a 5.21 root mean square error (RMSE) and an R-square of 0.71 with a 4.22 mean absolute error (MAE) indicative of higher accuracy performance compared to other regularization regression models. The advantage of the proposed modified LRE is that it enables effective regularization via modified penalty with the feature selection characteristics of both lasso and ridge.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.