Novel breast carcinoma dual-targeted redox-responsive nanoparticles (NPs) based on cholesteryl-hyaluronic acid conjugates were designed for intracellular delivery of the antitumor drug doxorubicin (DOX). A series of reduction-responsive hyaluronic acid derivatives grafted with hydrophobic cholesteryl moiety (HA-ss-Chol) and GE11 peptide conjugated HA-ss-Chol (GE11–HA-ss-Chol) were synthesized. The obtained conjugates showed attractive self-assembly characteristics and high drug loading capacity. GE11–HA-ss-Chol NPs were highly stable under conditions mimicking normal physiological conditions, while showing a fast degradation of the vehicle’s structure and accelerating the drug release dramatically in the presence of intracellular reductive environment. Furthermore, the cellular uptake assay confirmed GE11–HA-ss-Chol NPs were taken up by MDA-MB-231 cells through CD44- and epidermal growth factor receptor-mediated endocytosis. The internalization pathways of GE11–HA-ss-Chol NPs might involve clathrin-mediated endocytosis and macropinocytosis. The intracellular distribution of DOX in GE11–HA-ss-Chol NPs showed a faster release and more efficient nuclear delivery than the insensitive control. Enhanced in vitro cytotoxicity of GE11–HA-ss-Chol DOX-NPs further confirmed the superiority of their dual-targeting and redox-responsive capacity. Moreover, in vivo imaging investigation in MDA-MB-231 tumor-bearing mice confirmed that GE11–HA-ss-Chol NPs labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide, a near-infrared fluorescence dye, possessed a preferable tumor accumulation ability as compared to the single-targeting counterpart (HA-ss-Chol NPs). The antitumor efficacy showed an improved therapy efficacy and lower systemic side effect. These results suggest GE11–HA-ss-Chol NPs provide a good potential platform for antitumor drugs.
Tumor metastasis is the biggest challenge in cancer therapy. During the metastasis process, metastatic cells could acquire stealth ability toward immune system through the formation of a protection cloak by hijacking platelets (PTs). Heparins, a heterogeneous mixture of glycosaminoglycans, can inhibit metastatic cascades by blocking P-selectin-mediated intercellular adhesion between tumor cells and PTs. In this study, low-molecular-weight heparin-coated doxorubicin-loaded liposome (LMWH-DOX-Lip) was developed for metastasis preventative therapy. The formation of LMWH-DOX-Lip was based on electrostatic interactions between the negatively charged heparins and cationic lipids. LMWH-DOX-Lip prepared at the optimum prescription possessed high entrapment efficiency, ideal particle size and zeta potential. Morphology of LMWH-DOX-Lip was characterized by atomic force microscopy and transmission electron microscopy. The results of confocal microscopic observations and flow cytometry analysis indicated that LMWH-DOX-Lip mediated an efficient cellular uptake in B16F10 melanoma cell line. Besides, LMWH-DOX-Lip displayed an increased cytotoxic over their unmodified counterparts. Furthermore, the inhibition effect of LMWH-DOX-Lip on adhesion between tumor cells and PTs/P-selectin was observed. In vivo study performed on a pulmonary melanoma mouse model revealed a substantially tumor metastasis prevention by LMWH-DOX-Lip. All these results suggested that LMWH-DOX-Lip could significantly inhibit metastasis through preventing the tumor cell-platelet interactions and in the meantime suppressed tumor growth.
In the present study, we prepared an inclusion complex of methotrexate (MTX) with β-cyclodextrin (β-CD) in order to decrease its photosensitivity and enhance its aqueous solubility. Then we incorporated this inclusion complex in a self-microemulsifying drug delivery system (SMEDDS) overall to increase its oral bioavailability. The inclusion complex has been prepared by freeze drying method and characterized by differential scanning calorimetry (DSC), ultraviolet (UV), and infrared (IR) spectroscopy assays. The proper molecular ratio of MTX/β-CD was found to be of 1:7, and the water-solubility of MTX was increased in an average of 10-fold. The photostability studies showed that the MTX became stable on exposure to light. Construction of pseudoternary diagrams were investigated to prepare a MTX/β-CD inclusion complex loaded SMEDDS which was characterized by measuring the particle size and the zeta-potential. The optimum formulation of SMEDDS was a system consisting of ethyl oleate, tween 80, and propylene glycol with a mean droplet size of 39.42 nm. In vitro drug release in different pH media showed that the release profile of MTX from the MTX/β-CD loaded SMEDDS was influenced by the pH of the release medium and presented the characteristics of a sustained release profile. Finally, in-vivo studies showed an enhancement of the bioavailability of MTX from the MTX/β-CD loaded SMEDDS form of 1.57-fold. We concluded that the β-CD inclusion complex loaded SMEDDS improved the chemical and physiological properties of MTX and could be a promising means for the delivery of MTX and other unstable and lipophilic drugs by oral route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.