Methotrexate (MTX) is a widely used neurotoxic drug with broad antineoplastic and immunosuppressant spectra. However, the exact molecular mechanisms by which MTX inhibits hippocampal neurogenesis are yet unclear. Dexmedetomidine (Dex), an α2-adrenergic receptor agonist, has recently shown neuroprotective effects; however, its full mechanism is unexplored. This study investigated the potential of Dex to mitigate MTX-induced neurotoxicity and memory impairment in rats and the possible role of the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Notably, no former studies have linked this pathway to MTX-induced neurotoxicity. Male Sprague Dawley rats were placed into four groups. Group 1 received saline i.p. daily and i.v. on days 8 and 15. Group 2 received Dex at 10 μg/kg/day i.p. for 30 days. Group 3 received MTX at 75 mg/kg i.v. on days 8 and 15, followed by four i.p. doses of leucovorin at 6 mg/kg after 18 h and 3 mg/kg after 26, 42, and 50 h. Group 4 received MTX and leucovorin as in group 3 and Dex daily dosages as in group 2. Bioinformatic analysis identified the association of miR-15a with ROCK-1/ERK1/2/CREB/BDNF and neurogenesis. MTX lowered hippocampal doublecortin and Ki-67, two markers of neurogenesis. This was associated with the downregulation of miR-15a, upregulation of its target ROCK-1, and reduction in the downstream ERK1/2/CREB/BDNF pathway, along with disturbed hippocampal redox state. Novel object recognition and Morris water maze tests demonstrated the MTX-induced memory deficiencies. Dex co-treatment reversed the MTX-induced behavioral, biochemical, and histological alterations in the rats. These neuroprotective actions could be partly mediated through modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway, which enhances hippocampal neurogenesis.
Microglial activation underpins the methotrexate (MTX)-induced neurotoxicity; however, the precise mechanism remains unclear. This study appraised the potential impact of apigenin (Api), a neuroprotective flavonoid, in MTX-induced neurotoxicity in rats in terms of microglial activation through targeting the miR-15a/Rho-associated protein kinase-1 (ROCK-1)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Male Sprague Dawley rats were randomly divided into 4 groups: Normal control (saline i.p. daily and i.v. on days 8 and 15); Api control (20 mg/kg, p.o.) daily for 30 days; MTX-alone (75 mg/kg, i.v.) on days 8 and 15, then four i.p. injections of leucovorin (LCV): 6 mg/kg after 18 h, then three doses (3 mg/kg) every 8 h post-MTX; and Api co-treated (20 mg/kg/day, p.o.) throughout the model for 30 days, with administration of MTX and LCV as in group 3. MTX administration elevated hippocampal ionized calcium-binding adaptor protein-1 (Iba-1) immunostaining, indicating microglial activation. This was accompanied by neuroinflammation, oxidative stress, and enhanced apoptosis manifested by elevated hippocampal interleukin-1β, malondialdehyde, and caspase-3, and decreased reduced glutathione levels. Concurrently, abated miR-15a expression, overexpression of its target ROCK-1, diminished downstream ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation, and decreased hippocampal brain-derived neurotrophic factor (BDNF) levels were observed. Api mitigated the MTX-induced neurotoxicity by reversing the biochemical, histopathological, and behavioral derangements tested by novel object recognition and Morris water maze tests. Conclusively, Api lessens MTX-induced neuroinflammation, oxidative stress, and apoptosis and boosts cognitive function through inhibiting microglial activation via modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Graphical Abstract Graphical abstract showing the effects of methotrexate and apigenin co-treatment in MTX-induced neurotoxicity model. On the left, methotrexate (MTX) administration to rats resulted in hippocampal miR-15a downregulation, which triggered an enhanced expression of its target ROCK-1, consequently inhibiting the downstream ERK1/2/CREB/BDNF pathway, instigating a state of microglial activation, neuroinflammation, oxidative stress, and apoptosis. On the other hand, apigenin (Api) co-treatment restored miR-15a, inhibited ROCK-1 expression, and activated the ERK1/2/CREB/BDNF pathway, leading to diminished hippocampal microglial activation, neuroinflammation, and apoptosis, and restoration of the redox balance, along with improvement in memory and cognitive function of the MTX-treated rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.