Reconfigurable intelligent surfaces (RISs) are considered among the key techniques to be adopted for sixthgeneration cellular networks (6G) to enhance not only communications but also localization performance. In this regard, we propose a novel single-anchor localization algorithm for a stateof-the-art architecture where the position of the user equipment (UE) is to be estimated at the base station (BS) with the aid of a RIS. We consider a practical model that accounts for both nearfield propagation and multipath environments. The proposed scheme relies on a compressed sensing (CS) technique tailored to address the issues associated with near-field localization and model mismatches. Also, the RIS phases are optimized to enhance the positioning performance, achieving more than one order of magnitude gain in the localization accuracy compared to RISs with non-optimized phases.
Reconfigurable intelligent surfaces (RISs) are expected to play a significant role in the next generation of wireless cellular technology. This paper proposes an uplink localization scheme using a single-snapshot solution for user equipment (UE) that is located in the near-field of the RIS. We propose utilizing the atomic norm minimization method to achieve super-resolution localization accuracy. We formulate an optimization problem to estimate the UE location parameters (i.e., angles and distances) by minimizing the atomic norm. Then, we propose to exploit strong duality to solve the atomic norm problem using the dual problem and semidefinite programming (SDP). The RIS is controlled and designed using estimated parameters to enhance the beamforming capabilities. Finally, we compare the localization performance of the proposed atomic norm minimization with compressed sensing (CS) in terms of the localization error. The numerical results show a superior performance of the proposed atomic norm method over the CS where a sub-cm level of accuracy can be achieved under some of the system configuration conditions using the proposed atomic norm method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.