The common West African bonga shad represents a large part of the fish biomass in 2 neighbouring estuaries that function in different ways. The Gambia estuary has a normal salinity gradient, while the Saloum has an inverse gradient. Bonga shad Ethmalosa fimbriata were collected in both ecosystems during a 16 mo period (June 2001 to September 2002) at 5 locations, to investigate the role of salinity on life history traits. The main traits were studied at a spatio-temporal scale: reproduction from macroscopic examination of the gonads, oocyte counting and measuring, and growth from interpretation and measurements of a sub-sample of otoliths. Analysis of genetic differentiation at 3 intronic and 1 anonymous nuclear gene loci was also carried out to investigate differences between estuaries and among locations. The results did not show any allelic frequency heterogeneity between populations, indicating that populations of both estuaries represent 1 single panmictic unit, and that selection is not significantly acting on these loci. Hence, the response of the different traits to environmental variation may primarily represent phenotypic plasticity. The seasonal cycle of reproduction was clearer in the Saloum, occurring during a long period (January to August). The calculated size at maturity was reduced for both sexes in the upper Saloum, where the salinity was highest. The relative fecundity and the oocyte size were larger in the Saloum. On the otoliths, translucent zones, formed each year at the end of the rains (September to October), were used to estimate the age in months. Growth rates were reduced in the hypersaline environment of the Saloum, whereas growth differences were smaller between the Gambia and the pooled Saloum data, with a salinity < 60 psu. Growth was faster in the lower parts of the Saloum, related to better conditions for fish. The results illustrate that an environment with high salinity (> 60 psu) affects the growth, reduces the size-at-maturity and increases the fecundity of E. fimbriata.
The inorganic contamination of sediment and harvested molluscs was investigated in the mangrove environment of Southern West Senegal. Trace metals were analysed in surface sediments, two bivalves (Arca senilis and Crassostera gasar) and three gastropods (Conus spp., Hexaplex duplex and Pugilina morio) collected from four stations: Dionewar, Niodor and Falia localised in the Saloum Delta, and Fadiouth from the Petite Côte. A geochemical normalisation approach by using aluminium allowed for discrimination of sediment contamination among sites. Indeed, Fadiouth appeared highly contaminated with Cd, Hg and Ni compared to the Saloum Delta. For all mangrove sites, trace metals exhibited significant higher concentrations (on a dry weight basis) in shellfish compared to sediments, excepted for Ni and Pb. The distribution pattern followed a similar global trend in molluscs regardless of the spatio-temporal variability, with the predominance of Zn (80% of total metals) followed by Cu and Cd. However, strong differences of metal bioavailability and bioaccumulation in biota were demonstrated, revealing the requirement of employing a suite of organism bioindicators to monitor metal contamination in mangrove ecosystems. From an ecotoxicological point of view, trace metal levels in sediments from the Petite Côte and the Sine-Saloum Estuary were below the effects range-low (ERL) threshold limit of the sediment quality guidelines for adverse biological effects (SQGs). On the opposite, some concerns about Cd contamination of edible shellfish from Southern West Senegal were highlighted, from both the safety point of view of local populations' health, and the chemical quality point of view of exported resources.
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
The implementation of long-lasting insecticidal-treated bed nets (LLINs) has contributed to halving the mortality rate due to malaria since 2000 in sub-Saharan Africa. These tools are highly effective against indoor-feeding malaria vectors. Thus, to achieve the World Health Assembly's new target to reduce the burden of malaria over the next 15 years by 90%, it is necessary to understand how the spatiotemporal dynamics of malaria vectors and human exposure to bites is modified in the context of scaling up global efforts to control malaria transmission. This study was conducted in Dielmo, a Senegalese village, after the introduction of LLINs and two rounds of LLINs renewals. Data analysis showed that implementation of LLINs correlated with a significant decrease in the biting densities of the main malaria vectors, s.l. and, reducing malaria transmission. Other environment factors likely contributed to the decrease in , but this trend was enhanced with the introduction of LLINs. The bulk of bites occurred during sleeping hours, but the residual vector populations of s.l. and had an increased propensity to bite outdoors, so a risk of infectious bites remained for LLINs users. These results highlight the need to increase the level and correct use of LLINs and to combine this intervention with complementary control measures against residual exposure, such as spatial repellents and larval source management, to achieve the goal of eliminating malaria transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.