Previous publications demonstrated the sensibility of the bacteria, when these were reproduced in mediums that contain nanoparticles of luminescent silicon. The mentioned effect takes place in the development of a bacteriological sensor. The present investigation is centered on the study of the growth curves of E. coli and C. xerosis, but now in the presence of nanosize particles of Cobalt Ferrite (CoFe2O4) which were produced by the co-precipitation method in a watery phase. These nanoparticles present ferromagnetism characteristics (coercivity at room temperature among 600-5000 Oe for a size around 15-40nm). The experiment results evidence that the adaptation period of the bacteria, in contact with a stable suspension of nanoparticles of Ferrite, shows a growth curve of above the one obtained in absence of the nanoparticles (standard curve). The probable interaction of the electric polarity that these possess should be involved with the observed phenomena.
The present investigation is centered on the study of the growth curves of E. coli and C. xerosis bacteria in the presence of nanosize particles of Zinc Oxide. Previous works demonstrated the sensitivity of the bacteria, when these were reproduced in media that contain nanoparticles of luminescent silicon and Cobalt Ferrite. Doped ZnO nanocrystals were synthesized by conventional precipitation in ethanol solutions as reported by Spanhel and Anderson for bare ZnO. In our case, the syntheses were carried out under room-temperature conditions.The experimental results of E. coli bacteria in contact with a stable suspension of nanoparticles of Zinc Oxide, shows a growth curve without adaptation period. Moreover a short and slowly logarithmic stage has been observed, reaching the stationary stage after approximately four hours compared with one in absence of the nanoparticles (standard curve). During the observations, a change in the lifetime of the bacteria (metabolism) with particulate was noticed,as well as the beginning of the mortality stage. However, different results were recorded for silicon and ferrite. For the case of the bacteria C. xerosis, the curve with particles is above its standard curve, for all times with none of the oscillations which occured in the nanometer silicon. For these bacteria the beginning of the mortality stage is observed when they have particles. For both bacteria with Zinc Oxide nanoparticles this occurs approximately after nine hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.