Using hepatocyte-based culture models for HCV, we found a portion of HCV dsRNA intermediates to be released from infected cells in EVs, which reduces activation of toll-like receptor 3. This represents a novel mechanism how HCV evades host immune responses, potentially contributing to viral persistence.
The HAV nonstructural protein 2C is essential for virus replication; however, its precise function remains elusive. Although HAV 2C shares 24–27% sequence identity with other 2Cs, key motifs are conserved. Here, we demonstrate that HAV 2C is an ATPase but lacking helicase activity. We identified an ATPase-independent nuclease activity of HAV 2C with a preference for polyuridylic single-stranded RNAs. We determined the crystal structure of an HAV 2C fragment to 2.2 Å resolution, containing an ATPase domain, a region equivalent to enterovirus 2C zinc-finger (ZFER) and a C-terminal amphipathic helix (PBD). The PBD of HAV 2C occupies a hydrophobic pocket (Pocket) in the adjacent 2C, and we show the PBD–Pocket interaction is vital for 2C functions. We identified acidic residues that are essential for the ribonuclease activity and demonstrated mutations at these sites abrogate virus replication. We built a hexameric-ring model of HAV 2C, revealing the ribonuclease-essential residues clustering around the central pore of the ring, whereas the ATPase active sites line up at the gaps between adjacent 2Cs. Finally, we show the ribonuclease activity is shared by other picornavirus 2Cs. Our findings identified a previously unfound activity of picornavirus 2C, providing novel insights into the mechanisms of virus replication.
ObjectiveHepatitis A virus (HAV) infections are considered not to trigger an innate immune responsein vivo, in contrast to hepatitis C virus (HCV). This lack of immune induction has been imputed to strong immune counteraction by HAV proteases 3CD and 3ABC. We aimed at elucidating the mechanisms of innate immune induction and counteraction by HAV and HCVin vivoandin vitro.DesignuPA-SCID mice with humanized liver were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by TLR3 and RIG-I/MDA5, respectively. Cleavage of the adaptor proteins TRIF and MAVS was analyzed by transient and stable expression of HAV and HCV proteases and virus infection.ResultsWe detected similar levels of Interferon stimulated genes (ISGs) induction in hepatocytes of HAV and HCV infected human liver chimeric mice. In cell culture, HAV induced ISGs exclusively upon sensing by MDA5 and dependent on LGP2. TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF was not cleaved.ConclusionsHAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates TLR3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV induced antiviral response in hepatocytes. Our results shed new light on induction and counteraction of innate immunity by HAV and HCV and their potential contribution to clearance and persistence.SIGNIFICANCE OF THIS STUDYWhat is already known on this topic?—Despite sharing biological and molecular similarities, HAV infections are always cleared while HCV infections persist in most cases.—In infected chimpanzees HAV does not trigger a strong innate immune response, as opposed to HCV. This has been imputed to the action of HAV proteases abrogating the signalling pathways.—Physiologicalin vitroandin vivomodels, based on human hepatocytes, to assess HAV and HCV mechanisms of induction and interference of innate immunity are still missing.What this study adds—HAV induces an innate immune responsein vitroandin vivo, in systems with intact signalling pathways and devoid of adaptive immunity.—HAV 3ABC and 3CD proteases do not abolish the host innate immune response.—HCV NS3-4A protease disrupts the RLRs pathways, but cannot cleave TRIF and has no impact on TLR3 response.How this study might affect research, practice or policy—This study offers a comprehensive, side-by-side investigation on HAV and HCV infections in physiological models which recapitulate a cytokine response in the human liver, and allows a precise assessment of the viral interference related to the function of the respective signalling pathways.—Our results elucidate mechanisms, so far controversial or poorly investigated, thus contributing to our understanding of HAV clearance and HCV persistence.
Hepatitis C virus (HCV) is highly diverse and grouped into eight genotypes (gts). Infectious cell culture models are limited to a few subtypes and isolates, hampering the development of prophylactic vaccines. A consensus gt1b genome (termed GLT1) was generated from an HCV infected liver-transplanted patient. GLT1 replicated to an outstanding efficiency in Huh7 cells upon SEC14L2 expression, by use of replication enhancing mutations or with a previously developed inhibitor-based regimen. RNA replication levels almost reached JFH-1, but full-length genomes failed to produce detectable amounts of infectious virus. Long-term passaging led to the adaptation of a genome carrying 21 mutations and concomitant production of high levels of transmissible infectivity (GLT1cc). During the adaptation, GLT1 spread in the culture even in absence of detectable amounts of free virus, likely due to cell-to-cell transmission, which appeared to substantially contribute to spreading of other isolates as well. Mechanistically, genome replication and particle production efficiency were enhanced by adaptation, while cell entry competence of HCV pseudoparticles was not affected. Furthermore, GLT1cc retained the ability to replicate in human liver chimeric mice, which was critically dependent on a mutation in domain 3 of nonstructural protein NS5A. Over the course of infection, only one mutation in the surface glycoprotein E2 consistently reverted to wildtype, facilitating assembly in cell culture but potentially affecting CD81 interaction in vivo. Overall, GLT1cc is an efficient gt1b infectious cell culture model, paving the road to a rationale-based establishment of new infectious HCV isolates and represents an important novel tool for the development of prophylactic HCV vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.