Colorectal cancer (CRC) is the most prominent form of colon cancer for both incidence (38.7 per 100,000 people) and mortality (13.9 per 100,000 people). CRC’s poor response to standard therapies is linked to its high heterogeneity and complex genetic background. Dysregulation or depletion of the tumor suppressor p53 is involved in CRC transformation and its capability to escape therapy, with p53null cancer subtypes known, in fact, to have a poor prognosis. In such a context, new therapeutic approaches aimed at reducing CRC proliferation must be investigated. In clinical practice, CRC chemotherapy is often combined with radiation therapy with the aim of blocking the expansion of the tumor mass or removing residual cancer cells, though contemporary targeting of amino acid metabolism has not yet been explored. In the present study, we used the p53null Caco-2 model cell line to evaluate the effect of a possible combination of radiation and L-Asparaginase (L-ASNase), a protein drug that blocks cancer proliferation by impairing asparagine and glutamine extracellular supply. When L-ASNase was administered immediately after IR, we observed a reduced proliferative capability, a delay in DNA-damage response and a reduced capability to adhere and migrate. Our data suggest that a correctly timed combination of X-rays and L-ASNase treatment could represent an advantage in CRC therapy.
We present new developments for an ab-initio model of the neutron relative biological effectiveness (RBE) in inducing specific classes of DNA damage. RBE is evaluated as a function of the incident neutron energy and of the depth inside a human-sized phantom. The adopted mechanistic approach traces neutron RBE back to its origin, i.e. neutron physical interactions with biological tissues. To this aim, we combined the simulation of radiation transport through biological matter, performed with the Monte Carlo code PHITS, and the prediction of DNA damage using analytical formulas, which ground on a large database of biophysical radiation track structure simulations performed with the code PARTRAC. In particular, two classes of DNA damage were considered: sites and clusters of double strand breaks (DSBs), which are known to be correlated with cell fate following radiation exposure. Within a coherent modelling framework, this approach tackles the variation of neutron RBE in a wide energy range, from thermal neutrons to neutrons of hundreds of GeV, and reproduce effects related to depth in a human-size receptor, as well as to the receptor size. RBE predictions were successfully compared to the currently adopted radiation protection standards for neutron weighting factors. Our results also suggest that great care is needed when applying weighting factors as a function of incident neutron energy, not explicitly considering RBE variation in the target. Look-up RBE tables and an analytical representation of the maximal RBE vs. neutron energy are finally proposed, to facilitate the use of our results in radiation biology studies and radiation protection applications with neutron exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.