Coagulation is a highly conserved process occurring after an injury to a blood vessel and resulting in hemostasis. In the thrombus microenvironment, finely orchestrated events restore vessel integrity through platelet activation, adhesion, and aggregation (primary hemostasis), followed by the coagulation cascades, thrombin generation, and fibrin clot deposition (secondary hemostasis). Several studies on cancer have provided insight into dramatic changes to coagulation-related events (i.e., fibrin clot deposition, fibrinolysis) during tumor pathogenesis, progression, and metastasis, in addition to a tumor-driven systemic activation of hemostasis and thrombosis (Trousseau's syndrome). Diverse molecular and cellular effectors participate in the cross talk between hemostasis and tumors. Here, we focus on some aspects of the interconnection between cancer biology and hemostatic components, with particular attention to some key coagulation-related proteins (e.g., tissue factor, thrombin, fibrinogen, and D-dimers) in the particular case of gastric cancer (GC). Recent advances in deciphering the complex molecular link between GC and the coagulation system are described, showing their important roles in better management of patients affected by GC.
SummaryDespite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatinmodifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.