A statistical approach to a self-consistent description of kinetic and hydrodynamic processes in systems of interacting particles is formulated on the basis of the nonequilibrium statistical operator method by D.N.Zubarev. It is shown how to obtain the kinetic equation of the revised Enskog theory for a hard sphere model, the kinetic equations for multistep potentials of interaction and the Enskog-Landau kinetic equation for a system of charged hard spheres. The BBGKY hierarchy is analyzed on the basis of modified group expansions. Generalized transport equations are obtained in view of a self-consistent description of kinetics and hydrodynamics. Time correlation functions, spectra of collective excitations and generalized transport coefficients are investigated in the case of weakly nonequilibrium systems of interacting particles.
The concept of generalized collective modes, recently proposed for the investigation of simple fluids, is now applied to describe processes of dielectric relaxation in dipolar systems. The approach presented here is an extension of the dipole-density formalism to arbitrary numbers of dynamical variables and values of wavelengths. Generalized dipolar mode spectra of a Stockmayer fluid are evaluated over a wide scale of wavelengths up to the five-variable approximation. The wavevector-and frequency-dependent dielectric permittivity and dipole-moment time autocorrelation functions are calculated on the basis of analytical expressions using the dipolar modes. The obtained results are compared with those achieved in lower-order approximations and with molecular dynamics data. It is shown that the fivevariable description quantitatively reproduces the entire frequency dependence of the dielectric constant at arbitrary wavenumbers.
A novel approach is developed for computer simulation studies of dynamical properties of spin liquids. It is based on the Liouville operator formalism of Hamiltonian dynamics in conjunction with Suzuki-Trotter-like decompositions of exponential propagators. As a result, a whole set of symplectic time-reversible algorithms has been introduced for numerical integration of the equations of motion at the presence of both translational and spin degrees of freedom. It is shown that these algorithms can be used in actual simulations with much larger time steps than those inherent in standard predictor-corrector schemes. This has allowed one to perform direct quantitative measurements for spin-spin, spin-density and density-density dynamical structure factors of a Heisenberg ferrofluid model for the first time. It was established that like pure liquids the density spectrum can be expressed in terms of heat and sound modes, whereas like spin lattices in the ferromagnetic phase there exists one primary spin in the shape of spinspin dynamic structure factors describing the longitudinal and transverse spin fluctuations. As it was predicted in our previous paper [Mryglod I., Folk R. et al., Physica A277 (2000) 389] we found also that a secondary wave peak appears additionally in the longitudinal spin-spin dynamic structure factor. The frequency position of this peak coincides entirely with that for a sound mode reflecting the effect of the liquid subsystem on spin dynamics. The possibility of longitudinal spin wave propagation in magnetic liquids at sound frequency can be considered as a new effect which has yet to be tested experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.