A novel photoluminescence is reported for small metal nanocrystals in the near-infrared region (1.1-1.6 µm). Near-infrared photoluminescence spectra were measured at room temperature for 1.1 and 1.7 nm Au nanocrystals using a 1.06 µm excitation source. This photoluminescence is attributed to sp to sp-like transitions, analogous to intraband transitions in bulk gold; however, the exact mechanism is unknown. A conservative estimate for the quantum yield for the 1.7 nm gold nanocrystals is (4.4 ( 1.5) × 10 -5 at room temperature, more than 5 orders of magnitude greater than that of bulk gold.
Mesoporous gold (Au) films with tunable pores are expected to provide fascinating optical properties stimulated by the mesospaces, but they have not been realized yet because of the difficulty of controlling the Au crystal growth. Here, we report a reliable soft-templating method to fabricate mesoporous Au films using stable micelles of diblock copolymers, with electrochemical deposition advantageous for precise control of Au crystal growth. Strong field enhancement takes place around the center of the uniform mesopores as well as on the walls between the pores, leading to the enhanced light scattering as well as surface-enhanced Raman scattering (SERS), which is understandable, for example, from Babinet principles applied for the reverse system of nanoparticle ensembles.
Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ∼2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.
The first examples of an oriented periodic mesoporous organosilica (PMO) film, containing a variety of organic groups (ethane, ethene, benzene, thiophene) inside the channel walls, are reported. The mesostructure of the PMO film appears oriented with respect to the surface of the underlying glass substrate. Liquid‐crystal topological defects in the precursor gels are replicated in the resulting PMO film and are evident in polarized optical microscopy images, recorded between crossed‐polarizers, which show fan‐type optical birefringence texture characteristic of the mesostructure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.