Abstract-Fog computing provides a distributed infrastructure at the edges of the network, resulting in low-latency access and faster response to application requests when compared to centralized clouds. With this new level of computing capacity introduced between users and the data center-based clouds, new forms of resource allocation and management can be developed to take advantage of the Fog infrastructure. A wide range of applications with different requirements run on end-user devices, and with the popularity of cloud computing many of them rely on remote processing or storage. As clouds are primarily delivered through centralized data centers, such remote processing/storage usually takes place at a single location that hosts user applications and data. The distributed capacity provided by Fog computing allows execution and storage to be performed at different locations. The combination of distributed capacity, the range and types of user applications, and the mobility of smart devices require resource management and scheduling strategies that takes into account these factors altogether. We analyze the scheduling problem in Fog computing, focusing on how user mobility can influence application performance and how three different scheduling policies, namely concurrent, FCFS, and delay-priority, can be used to improve execution based on application characteristics.
The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to * Corresponding
Research in the Internet of Things (IoT) conceives a world where everyday objects are connected to the Internet and exchange, store, process, and collect data from the surrounding environment. IoT devices are becoming essential for supporting the delivery of data to enable electronic services, but they are not sufficient in most cases to host application services directly due to their intrinsic resource constraints. Fog Computing (FC) can be a suitable paradigm to overcome these limitations, as it can coexist and cooperate with centralized Cloud systems and extends the latter toward the network edge. In this way, it is possible to distribute resources and services of computing, storage, and networking along the Cloud-to-Things continuum. As such, FC brings all the benefits of Cloud Computing (CC) closer to end (user) devices. This article presents a survey on the employment of FC to support IoT devices and services. The principles and literature characterizing FC are described, highlighting six IoT application domains that may benefit from the use of this paradigm. The extension of Cloud systems towards the network edge also creates new challenges and can have an impact on existing approaches employed in Cloud-based deployments. Research directions being adopted by the community are highlighted, with an indication of which of these are likely to have the greatest impact. An overview of existing FC software and hardware platforms for the IoT is also provided, along with the standardisation efforts in this area initiated by the OpenFog Consortium (OFC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.