A blockchain is a distributed, digitized and consensus-based secure information storage mechanism. The present article provides an overview of blockchain based e-voting systems. The primary purpose of this review is to study the up-to-date state of blockchain-based voting research along with associated possible challenges while aiming to forecast future directions. The methodology applied in the review is a systematic review approach. Following an introduction to the basic structure and features of the blockchain in relation to e-voting, we provide a conceptual description of the desired blockchain-based e-voting application. Symmetrical and asymmetrical cryptography improvements play a key role in developing blockchain systems. We have extracted and reviewed 63 research papers from scientific databases that have advised the adoption of the blockchain framework to voting systems. These articles indicate that blockchain-supported voting systems may provide different solutions than traditional e-voting. We classified the main prevailing issues into the five following categories: general, integrity, coin-based, privacy and consensus. As a result of this research, it was determined that blockchain systems can provide solutions to certain problems that prevail in current election systems. On the other hand, privacy protection and transaction speed are most frequently emphasized problems in blockchain applications. Security of remote participation and scalability should be improved for sustainable blockchain based e-voting. It was concluded that frameworks needed enhancements in order to be used in voting systems due to these reservations.
Security and trust are seen as the most important issues in electronic voting systems. Therefore, it is necessary to use cryptographic procedures to ensure anonymity, security, privacy, and reliability in these systems. In recent years, blockchain has become one of the most commonly used methods for securing data storage and transmission through decentralized applications. E-voting is one of these application areas. However, data manipulation is still seen as a major potential problem in e-voting systems. In theproposed model, administrators or miners are prevented from previewing election results which are normally accessible data due to the blockchain structure. A double-layer encryption model is proposed and tested to prevent manipulations that may occur with the election results. It is ensured that the election results can be counted after the participation of all stakeholders at the end. In this way, potential manipulations may be prevented during the election period. As a result of the model, the privacy of voters is ensured, no central authority is needed, and the recorded votes are kept in a distributed structure.
Abstract-Risk identification and assessment are amongst critical activities in software project management. However, identifying and assessing risks and uncertainties is a challenging process especially for emergent software organizations that lack resources. The research aims to introduce a method and a prototype tool to assist software development practitioners and teams with risk assessment processes. We have identified and put forward software project related risks from the literature. Then by conducting a survey to software practitioners of small organizations, we collected probability and impact of each risk factor opinions of 86 practitioners based on past projects. We developed a risk assessment method and a prototype tool initially based on data that accumulates further data as the tool. Along with a risk prioritisation and risk matrix, the method utilises fuzzy logic to provide the practitioners with predicted scores for potential failure types and aggregated risk score for the project. In order to validate the usability of the method and the tool, we have conducted a case study for the project risk assessment in a small software organization. The introduced method is partially successful at prediction of risks and estimating the probability of predefined failure modes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.