In resting-state functional magnetic resonance imaging (fMRI), functional connectivity measures can be influenced by the presence of a strong global component. A widely used pre-processing method for reducing the contribution of this component is global signal regression, in which a global mean time series signal is projected out of the fMRI time series data prior to the computation of connectivity measures. However, the use of global signal regression is controversial because the method can bias the correlation values to have an approximately zero mean and may in some instances create artifactual negative correlations. In addition, while many studies treat the global signal as a non-neural confound that needs to be removed, evidence from electrophysiological and fMRI measures in primates suggests that the global signal may contain significant neural correlates. In this study, we used simultaneously acquired fMRI and electroencephalographic (EEG) measures of resting-state activity to assess the relation between the fMRI global signal and EEG measures of vigilance in humans. We found that the amplitude of the global signal (defined as the standard deviation of the global signal) exhibited a significant negative correlation with EEG vigilance across subjects studied in the eyes-closed condition. In addition, increases in EEG vigilance due to the ingestion of caffeine were significantly associated with both a decrease in global signal amplitude and an increase in the average level of anti-correlation between the default mode network and the task-positive network.
Resting-state functional connectivity magnetic resonance imaging is proving to be an essential tool for the characterization of functional networks in the brain. Two of the major networks that have been identified are the default mode network (DMN) and the task positive network (TPN). Although prior work indicates that these two networks are anti-correlated, the findings are controversial because the anti-correlations are often found only after the application of a pre-processing step, known as global signal regression, that can produce artifactual anti-correlations. In this paper, we show that, for subjects studied in an eyes-closed rest state, caffeine can significantly enhance the detection of anti-correlations between the DMN and TPN without the need for global signal regression. In line with these findings, we find that caffeine also leads to widespread decreases in connectivity and global signal amplitude. Using a recently introduced geometric model of global signal effects, we demonstrate that these decreases are consistent with the removal of an additive global signal confound. In contrast to the effects observed in the eyes-closed rest state, caffeine did not lead to significant changes in global functional connectivity in the eyes-open rest state.
In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal from different brain regions is used to assess functional connectivity. However, because the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic nature can complicate the interpretation of differences in connectivity that are observed across conditions or subjects. For example, prior studies have shown that caffeine leads to widespread reductions in BOLD connectivity but were not able to determine if neural or vascular factors were primarily responsible for the observed decrease. In this study, we used source-localized magnetoencephalography (MEG) in conjunction with fMRI to further examine the origins of the caffeine-induced changes in BOLD connectivity. We observed widespread and significant (p < 0.01) reductions in both MEG and fMRI connectivity measures, suggesting that decreases in the connectivity of resting-state neuro-electric power fluctuations were primarily responsible for the observed BOLD connectivity changes. The MEG connectivity decreases were most pronounced in the beta band. By demonstrating the similarity in MEG and fMRI based connectivity changes, these results provide evidence for the neural basis of resting-state fMRI networks and further support the potential of MEG as a tool to characterize resting-state connectivity.
PurposeWorking memory (WM) represents the brain’s ability to maintain information in a readily available state for short periods of time. This study examines the resting-state cortical activity patterns that are most associated with performance on a difficult working-memory task.MethodsMagnetoencephalographic (MEG) band-passed (delta/theta (1–7 Hz), alpha (8–13 Hz), beta (14–30 Hz)) and sensor based regional power was collected in a population of adult men (18–28 yrs, n = 24) in both an eyes-closed and eyes-open resting state. The normalized power within each resting state condition as well as the normalized change in power between eyes closed and open (zECO) were correlated with performance on a WM task. The regional and band-limited measures that were most associated with performance were then combined using singular value decomposition (SVD) to determine the degree to which zECO power was associated with performance on the three-back verbal WM task.ResultsChanges in power from eyes closed to open revealed a significant decrease in power in all band-widths that was most pronounced in the posterior brain regions (delta/theta band). zECO right posterior frontal and parietal cortex delta/theta power were found to be inversely correlated with three-back working memory performance. The SVD evaluation of the most correlated zECO metrics then provided a singular measure that was highly correlated with three-back performance (r = −0.73, p<0.0001).ConclusionOur results indicate that there is an association between WM performance and changes in resting-state power (right posterior frontal and parietal delta/theta power). Moreover, an SVD of the most associated zECO measures produces a composite resting-state metric of regional neural oscillatory power that has an improved association with WM performance. To our knowledge, this is the first investigation that has found that changes in resting state electromagnetic neural patterns are highly associated with verbal working memory performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.