This work is licensed under Creative Commons Attribution-NonCommercial 4.0 International License ÖZ Bu çalışmada, farklı makine öğrenmesi teknikleriyle yatırım aracı verileri ile birlikte sosyal medya verileri kullanılarak hisse senedi tahminlenmesi amaçlanmıştır. Çalışma kapsamında, beş farklı havayolu firmasına ilişkin Ekim 2019 -Şubat 2020 dönemine ait 236 764 adet tweet ve söz konusu şirketlerin hisse senedi değeri ve işlem gördüğü borsanın günlük verileri, dolar kuru ve altın fiyatları ele alınmış olup, tweet'lerin analizinde duygu analizi gerçekleştirilmiştir. Çalışmada, Gradyan Destekli Ağaçlar (Gradient Boosted Trees) algoritmasının hisse senedi tahminlemesinde en düşük hata payına sahip tahmin modeli olduğu tespit edilmiş olup, şirketler hakkındaki net pozitif (pozitif-negatif) tweet sayılarının hisse senedi değeri tahminindeki en etkili faktörlerden birisi olduğu görülmüştür. Çalışma sonucunda, Gradyan Destekli Ağaçlar algoritmasının çalışma kapsamında kullanılan diğer algoritmalara göre hisse senedi tahminlemesinde etkin olduğu ve Twitter verisinin diğer yatırım verileri ile birlikte hisse senedi değeri tahmininde faydalanılabilecek bir veri kaynağı olduğu düşünülmektedir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.