Multiple importance sampling (MIS) is an indispensable tool in light-transport simulation. It enables robust Monte Carlo integration by combining samples from several techniques. However, it is well understood that such a combination is not always more efficient than using a single sampling technique. Thus a major criticism of complex combined estimators, such as bidirectional path tracing, is that they can be significantly less efficient on common scenes than simpler algorithms like forward path tracing. We propose a general method to improve MIS efficiency: By cheaply estimating the efficiencies of various technique and sample-count combinations, we can pick the best one. The key ingredient is a numerically robust and efficient scheme that uses the samples of one MIS combination to compute the efficiency of multiple other combinations. For example, we can run forward path tracing and use its samples to decide which subset of VCM to enable, and at what sampling rates. The sample count for each technique can be controlled per-pixel or globally. Applied to VCM, our approach enables robust rendering of complex scenes with caustics, without compromising efficiency on simpler scenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.