Monoclonal antibodies recognizing CD18, CD1la, CD1lb, and neutrophil lectin adhesion molecule 1 (LECAM-1), i.e., the human homologue of the murine MEL-14 antigen, were used to assess the relative contribution of these glycoproteins to neutrophil-endothelial adhesion. Under static conditions, the adhesion of neutrophils to IL-l-stimulated human umbilical vein endothelial cell (HUVEC) monolayers was inhibited by antibodies to CD18, CD1 la, and the neutrophil LECAM-1, and the effect of combining anti-LECAM-1 and anti-CD1 la was almost additive. Under flow at a wall shear stress of 1.85 dyn/ cm2, a condition where CD18-dependent adhesion is minimal, anti-LECAM-1 inhibited adhesion by > 50%. Chemotactic stimulation of neutrophils induced a rapid loss of LECAM-1 from the neutrophil surface, and the level of neutrophil surface LECAM-1 was closely correlated with adhesion under flow. Neutrophils contacting the activated endothelial cells for 30 min lost much of their surface LECAM-1, a phenomenon induced by a soluble factor or factors released into the medium by the stimulated monolayers, and a high percentage migrated through the HUVEC monolayer. This migration was almost completely inhibited by anti-CD18, but was unaffected by antibodies to neutrophil LECAM-1. These results support the concept that LECAM-1 is a neutrophil adhesion molecule that participates in the adherence of unstimulated neutrophils to cytokine-stimulated endothelial cells under conditions of flow, and is then lost from the neutrophil surface coincident with the engagement of CD18-dependent mechanisms leading to transendothelial migration. (J. Clin. Invest. 1991. 87:609-618.)
In postcapillary venules, marginating neutrophils (PMNs) are often seen rolling along the vessel wall prior to stopping and emigrating. There is substantial evidence in vitro and in vivo that the adhesion receptors E- and L-selectin participate in this phenomenon on cytokine-stimulated endothelium, and recent evidence has shown that a closely related adhesion receptor, P-selectin, is capable of mediating neutrophil rolling on an artificial membrane. Here we demonstrate and characterize PMN rolling on monolayers of human umbilical vein endothelial cells (HUVECs) stimulated with histamine to induce surface expression of P-selectin. Peak association of PMNs with the HUVECs occurs 10 min after histamine stimulation, and at a postcapillary venular wall shear stress of 2.0 dyn/cm2 the rolling velocity is 14 microns/s. Approximately 95% of the PMNs roll on the endothelial cells, 5% adhere firmly, and none migrate beneath the endothelial monolayer. Monoclonal antibody (MAb) G1, which binds P-selectin and blocks its adhesive function, completely prevents association of the PMNs with histamine-stimulated HUVEC, whereas the nonblocking anti-P-selectin MAb S12 does not. Treatment of PMNs with the anti-L-selectin MAb DREG56 reduces PMN adherence by approximately 50%. Anti-CD54 MAb R6.5 and anti-CD18 MAb R15.7 have little effect on the number of PMNs rolling on the HUVECs but completely prevent PMNs from stopping and significantly increase rolling velocity. Nonblocking control MAbs for R6.5 (CL203) and R15.7 (CL18/1D1) lack these effects. Rolling adhesion of PMNs on histamine-stimulated HUVECs therefore appears to be completely dependent on endothelial cell P-selectin, with a minor adhesion-stabilizing contribution from intercellular adhesion molecule 1 and beta 2 integrins. The partial inhibition of rolling with DREG56 suggests that L-selectin may also play a role in neutrophil interactions with histamine-stimulated endothelium. We further characterize these interactions by determining the effects of the various MAbs and wall shear stresses on adhesion patterns, rolling velocities, and distributions of rolling velocities.
E-selectin was evaluated for its ability to support neutrophil adhesion under conditions of flow. At a wall shear stress of 1.85 dyn/cm2, neutrophils were found to attach to E-selectin expressed on the apical surface of L cell monolayers. The initial intercellular contact was most often evidenced by neutrophils rolling on the monolayer at a mean rate of -10 ,um/s. Anti-Eselectin monoclonal antibody, CL2 /6, inhibited this interaction by > 90%. Rolling neutrophils often transiently stopped, but in contrast to the behavior on stimulated endothelial cells, they remained spherical in shape and did not migrate on or beneath the monolayer. A possible contribution of neutrophil L-selectin to this interaction was indicated by the findings that anti-L-selectin monoclonal antibody, DREG-56, inhibited E-selectindependent adhesion under flow by > 65%, and there was a highly significant correlation between surface levels of L-selectin and E-selectin-dependent adhesion under flow. E-selectin also appeared to support neutrophil adhesion to IL-lfl-stimulated endothelial cells under conditions of flow, but it accounted for only n 30% of the level of adherence, in contrast to L-selectin which accounted for > 65%. Thus, both L-selectin and E-selectin can support neutrophil adhesion at wall shear stresses that preclude intercellular adhesion molecule-I-dependent adhesion, and they participate in neutrophil adherence to stimulated endothelial cells under conditions of flow. (J. Clin. Invest.
Within the pediatric population, the rare aortic aneurysm is most often brought on by congenital cardiovascular malformation or connective tissue disorder, trauma, inflammatory disease, or infection. Thus our 8-year-old patient who had multiple aortic aneurysms and evidence of mucopolysaccharidosis presented a doubly unique case. Three and one-half months after the patient underwent emergency aortic valve replacement, we performed resection and graft replacement of both her descending thoracic aorta and thoracoabdominal aorta. Histologic analysis of the aneurysm wall displayed severe medial degeneration with large deposits of acid mucopolysaccharides. Subsequent evaluation, although negative for connective tissue disorders, showed glycosaminoglycans, chondroitin sulfate, and heparan sulfate in the patient's urine. These findings are diagnostic for a heterogeneous group of storage diseases termed mucopolysaccharidoses, although testing of the patient's cultured fibroblasts failed to reveal any specific previously described enzymatic defect. After reviewing the literature, we believe that this is the first known successfully treated pediatric aortic aneurysm associated with mucopolysaccharidosis.
To define further the molecular basis for abnormal interactions of cord blood or neonatal neutrophils with endothelial cells in vitro, we studied neutrophil adhesion and migration under experimental conditions specifically designed to evaluate CD18-independent mechanisms. Unstimulated cord blood neutrophils of healthy term neonates demonstrated significantly diminished adhesion to IL-1-stimulated endothelial cell monolayers under conditions of shear stress (congruent to 1.85 dynes/cm2); overall levels of migration by neonatal cells were also significantly diminished, although the adherent subpopulation of these cells migrated relatively normally. A mAb (DREG-56) against the human homologue of the murine MEL-14 antigen (termed lectin-, epidermal growth factor-, complement binding domain-cell adhesion molecule-1 (LECAM-1), a member of the LEC-CAM family of adhesion molecules) markedly inhibited adhesion of healthy adult but not cord blood neutrophils. In additional assessments of endothelial cell adhesion or migration in the absence of shear forces, cord blood neutrophils demonstrated significantly diminished values compared to adult controls. Moreover, mAb DREG-56 significantly diminished adhesion of healthy adult but not cord blood suspensions in the presence or absence of the anti-CD18 mAb R15.7. Immunofluorescence assessments of unstimulated cord blood neutrophils or neutrophils of neonates 12 to 48 h of age showed dramatically diminished levels of surface LECAM-1 compared to adult neutrophils. Chemotactic stimuli (FMLP, 10 nM, 15 min) consistently "down-regulated" surface LECAM-1 on adult neutrophils to levels approximately 10% of unstimulated suspensions and comparable to those of most unstimulated neonatal suspensions. Moreover, FMLP stimuli elicited little or no down-regulation of LECAM-1 on neonatal cells. In comparative studies, endothelial cell adhesion of unstimulated cord blood or adult control neutrophils (assessed under conditions of flow) was directly related to levels of neutrophil surface LECAM-1. Although FMLP stimulation significantly diminished both adhesion and LECAM-1 surface levels of adult control cells, the adhesion and LECAM-1 expression observed with cord blood cells were not significantly influenced by this stimulus. The mechanisms underlying diminished LECAM-1 expression and LECAM-1-dependent adhesion of neonatal neutrophils and the physiologic significance of these abnormalities deserve investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.