In order to achieve an efficient energy consumption level in the residential sector of a smart grid, the end-users are equipped with various smart home energy controller technologies. The devices are provided to inform the consumers about their consumption pattern by showing or sending different kinds of consumptional information to them. This kind of information is provided to assist them in making decisions about altering their consumption behaviour or to urge them to modify their life style during peak hours. We propose that the energy home controllers should offer preferred and optimal scenarios to support end-users when making a decision about their consumption. Effective scenarios should emerge from consumer's life style and preferences. In this paper, we will apply AHP methodology to quantify the consumer's preferences for using appliances during peak periods when the price has increased, and use the Knapsack problem approach to achieve the optimal solution for managing the appliances. With this approach, not only will the cost of electricity not escalate during peak hours, but also user preferences, satisfaction and minimum change to current life style will be considered.
Smart Grid is a novel initiative the aim of which is to deliver energy to the users and also to achieve consumption efficiency by means of two-way communication. The Smart Grid architecture is a combination of various hardware devices, management and reporting software tools that are combined within an ICT infrastructure. This infrastructure is needed to make the smart grid sustainable, creative and intelligent. One of the main goals of Smart Grid is to achieve Demand Response (DR) by increasing the end users' participation in decision making and increasing the awareness that will lead them to manage their energy consumption in an efficient way. Approaches proposed in the literature achieve demand response at the different levels of the Smart Grid, but no approach focuses on the users' point of view at the home level on a continuous basis and in an intelligent way to achieve demand response. In this paper, we develop such an approach by which demand response can be achieved on a continuous basis at the home level. To achieve this, the dynamic notion of price will be utilized to develop an intelligent decision-making model that will assist the users in achieving demand response.
In the context of intelligent home energy management in smart grid, the occupants' consumption behavior has a direct effect on the demand and supply of the electrical energy market. Correspondingly, the policies of the utility providers affect consumption behavior so techniques and tools are required to analyse the occupants' preferences, habits and lifestyles in order to support and facilitate their decision-making regarding the curtailing of their energy consumption and costs. The uncertainty about householders' preferences increases the uncertainty of appliance prioritization and makes it difficult to determine the consistency of preferences in terms of energy consumption. In this complex system, the preferences and judgments of householders are represented by linguistic and vague patterns. This paper proposes a much better representation of this linguistics that can be developed and refined by using the evaluation methods of fuzzy set theory. The proposed approach will apply the fuzzy Technique for Order Preference by Similarity to Ideal Solution (fuzzy TOPSIS) for achieving preferences. Based on our detailed literature review of the multi-agent system approach in this field, it is expected that the proposal model will offer a robust tool for communication and decision-making between occupant agents and dynamic environmental variables. It is shown that the proposed fuzzy TOPSIS approach will enable and assist householders to maximize their participation in demand response programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.