For more than half a century, Fischer-Tropsch synthesis (FTS) of liquid hydrocarbons was a technology of great potential for the indirect liquefaction of solid or gaseous carbon-based energy sources (Coal-To-Liquid (CTL) and Gas-To-Liquid (GTL)) into liquid transportable fuels. In contrast with the past, nowadays transport fuels are mainly produced from crude oil and there is not considerable diversity in their variety. Due to some limitations in the first generation bio-fuels, the Second-Generation Biofuels (SGB)' technology was developed to perform the Biomass-To-Liquid (BTL) process. The BTL is a well-known multi-step process to convert the carbonaceous feedstock (biomass) into liquid fuels via FTS technology. This paper presents a brief history of FTS technology used to convert coal into liquid hydrocarbons; the significance of bioenergy and SGB are discussed as well. The paper covers the characteristics of biomass, which is used as feedstock in the BTL process. Different mechanisms in the FTS process to describe carbon monoxide hydrogenation as well as surface polymerization reaction are discussed widely in this paper. The discussed mechanisms consist of carbide, COinsertion and the hydroxycarbene mechanism. The surface chemistry of silica support is discussed. Silanol functional groups in silicon chemistry are explained extensively. The catalyst formulation in the Fischer Tropsch (F-T) process as well as F-T reaction engineering is discussed. In addition, the most common catalysts are introduced and the current reactor technologies in the F-T indirect liquefaction process are considered. process overview IntroductionThe over-reliance of the world's nations on conventional fossil fuels puts our planet in peril. The continuity of the current situation will result in the rise of a combined average temperature over global land and ocean surfaces by 5 ∘ C in 2100, bringing a rise in sea levels, food and water shortages and an increase in extreme weather events. The global warming, caused by humans, is one of the biggest threats to our future well-being [1]. In addition, oil reserves are limited and these reserves are decreasing dramatically. This reduction alongside the other relevant economic factors affects the world's oil prices. The need to run engines with the new generation of liquid fuels is inevitable. The investigations by the US Energy Information Administration (EIA) published in 2013 expressed a 56 percent increase in the world's energy consumption by the year 2040. Total world energy demand will have risen to 865 EJ (exajoule) by this year. The total world energy consumption was reported as 553 EJ in 2010. The outlook indicates that renewable energy is one of the fastest-growing energy sources in the world; where its usage increases 2.5 percent per year. Despite increasing success in the renewable energies, it is predicted that the fossil fuels will supply al-
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Current targets in reducing CO2 and other greenhouse gases as well as fossil fuel depletion have promoted the research for alternatives to petroleum-based fuels. Pyrolysis oil (PO) from biomass and waste oil is seen as a method to reduce life-cycle CO2, broaden the energy mix and increase the use of renewable fuels. The abundancy and low prices of feedstock have attracted the attention of biomass pyrolysis in order to obtain energy-dense products. Research has been carried out in optimising the pyrolysis process, finding efficient ways to convert the waste to energy. However, the pyrolysis products have a high content in water, high viscosity and high corrosiveness which makes them unsuitable for engine combustion. Upgrading processes such as gasification, trans-esterification or hydro-deoxynegation are then needed. These processes are normally costly and require high energy input. Thus, emulsification in fossil fuels or alcohols is being used as an alternative. In this research work, the feasibility of using PO-diesel emulsion in a single-cylinder diesel engine has been investigated. In-cylinder pressure, regulated gaseous emissions, particulate matter, fuel consumption and lubricity analysis reported. The tests were carried out of a stable non-corrosive wood pyrolysis product produced by Future Blends Ltd of Milton Park, Oxfordshire, UK. The product is trademarked by FBL, and is a stabilized fraction of raw pyrolysis oil produced in a process for which the patent is pending. The results show an increase in gaseous emissions, fuel consumption and a reduction in soot. The combustion was delayed with the emulsified fuel and a high variability was observed during engine operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.