One of the significant challenges in neuromorphic photonic architectures is the lack of good tools to simulate large-scale photonic integrated circuits. It is crucial to perform simulations on a single platform to capture the circuit’s behavior in the presence of both optical and electrical components. Here, we adopted a Verilog-A based approach to model neuromorphic photonic circuits by considering both the electrical and optical properties. Verilog-A models for the primary optical devices, such as lasers, couplers, waveguides, phase shifters, and photodetectors, are discussed, along with studying the composite devices such as microring resonators. Model parameters for different optical devices are extracted and tuned by analyzing the measured data. The simulated and experimental results are also compared for validation of Verilog-A models. Finally, a single photonic neuron circuit is simulated by implementing input, weight, and non-linear activation function by using lasers, microring resonators, and modulator, respectively. Electro-optical rapid co-simulation would significantly improve the efficiency of optimizing the devices and provide an accurate simulation of the circuit performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.