This study presents new low-power multiple-valued logic (MVL) circuits for nanoelectronics. These carbon nanotube field effect transistor (FET) (CNTFET)-based MVL circuits are designed based on the unique characteristics of the CNTFET device such as the capability of setting the desired threshold voltages by adopting correct diameters for the nanotubes as well as the same carrier mobility for the P-and N-type devices. These characteristics make CNTFETs very suitable for designing high-performance multiple-Vth circuits. The proposed MVL circuits are designed based on the conventional CMOS architecture and by utilising inherently binary gates. Moreover, each of the proposed CNTFET-based ternary circuits includes all the possible types of ternary logic, that is, negative, positive and standard, in one structure. The method proposed in this study is a universal technique for designing MVL logic circuits with any arbitrary number of logic levels, without static power dissipation. The results of the simulations, conducted using Synopsys HSPICE with 32 nm-CNTFET technology, demonstrate improvements in terms of power consumption, energy efficiency, robustness and specifically static power dissipation with respect to the other state-of-the-art ternary and quaternary circuits.
This paper presents two new efficient ternary Full Adder cells for nanoelectronics. These CNTFETbased ternary Full Adders are designed based on the unique characteristics of the CNTFET device, such as the capability of setting the desired threshold voltages by adopting proper diameters for the nanotubes as well as the same carrier mobilities for the N-type and P-type devices. These characteristics of CNTFETs make them very suitable for designing high-performance multiple-V th structures. The proposed structures reduce the number of the transistors considerably and have very high driving capability. The presented ternary Full Adders are simulated using Synopsys HSPICE with 32 nm CNTFET technology to evaluate their performance and to confirm their correct operation.
Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.