In this research, an innovative task of printing speed optimization for continuous fiber composites is examined. Employing continuous fibers is a new method to reinforce samples made by fused filament fabrication (FFF) technology. The printing speed is pivotal in the printing process of composites with continuous fibers because of its significant effect on the geometric shape of the samples, especially their corners. In the experimental part of study, continuous glass fiber (CGF) and polylactic acid (PLA) filaments are utilized during optimization as reinforcing phase and matrix, respectively, and are simultaneously fed into the extrusion-based polymer 3D printer to make PLA/CGF composites. Through the optimization, temperature changes of the deposited rasters in the presence and absence of fibers are calculated at the first step, and then the special relationship between the printing speeds and rasters’ temperature changes is determined. Finally, the optimal printing speed is computed based on a hypothesis, which is proved by the results of high-quality printed composites with different geometric shapes.
In this study, a novel task of printing speed optimization for continuous fiber composites is investigated. Using continuous fibers is an innovative approach to reinforce products made by fused filament fabrication (FFF) additive manufacturing (AM) technology. In the printing process of composites with continuous fibers, the printing speed is critical because of its significant effect on the geometric shape of the samples, especially their corners. During optimization in this research, continuous glass fiber (CGF) and polylactic acid (PLA) filaments were utilized as reinforcing phase and matrix, respectively, and were simultaneously fed into the extrusion-based polymer 3D printer to form PLA/CGF composites. The optimization was carried out by calculating the temperature changes of the deposited rasters in the presence and absence of fibers as a first step and then determining the special relationship between the printing speeds and rasters temperature changes. Finally, the optimal and the maximum printing speed was computed based on a hypothesis, which is proved by the results of high-quality printed composites with different geometric shapes.
In this study, 3D printing of poly-l-lactic acid (PLLA) scaffolds reinforced with graphene oxide (GO) nanoparticles via Digital Light Processing (DLP) was investigated to mimic bone tissue. Stereolithography is one of the most accurate additive manufacturing method, but the dominant available materials used in this method are toxic. In this research, a biocompatible resin (PLLA) was synthetized and functionalized to serve the purpose. Due to the low mechanical properties of the printed product with the neat resin, graphene oxide nanoparticles in three levels (0.5, 1, and 1.5 Wt.%) were added with the aim of enhancing the mechanical properties. At first, the optimum post cure time of the neat resin was investigated. Consequently, all the parts were post-cured for three hours after printing. Due to the temperature-dependent structure of GO, all samples were placed in an oven at 85 ° C for different time periods of 0, 6, 12, and 18 hours to increase mechanical properties. The compression test of heat treated samples reveals that the compressive strength of the printed parts containing 0.5,1, and 1.5 % of GO increased by 151,162 ad 235%, respectively. Scaffolds with the designed pore sizes of 750 microns and a porosity of 40% were printed. Surface hydrophilicity test was performed for all samples showing that the hydrophilicity of the samples increased with increasing GO percentage. The degradation behavior of the samples was evaluated in a PBS environment, and it revealed that by increasing GO, the rate of component degradation increased, but the heat treatment had the opposite effect and decreased the degradation rate. Finally, besides improving biological properties, a significant increase in mechanical properties under compression can introduce the printed scaffolds as a suitable option for bone implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.