We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schrödinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schrödinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell. * S.F. Ross@durham.ac.uk
Abstract:We examine the behavior of the spectral function for the T µ µ operator in QCD in the two regimes where it is possible to make analytical progress; weak coupling, and close to a second order QCD phase transition. We determine the behavior of the bulk viscosity in each regime. We discuss the problem of analytic continuation of the (lattice) Euclidean correlation function to determine the spectral function. In each case the spectral function has a narrow peak at small frequency; its shape would be challenging to extract accurately from lattice data with error bars.
In (2+1)-dimensional systems with broken parity, there exists yet another transport coefficient, appearing at the same order as the shear viscosity in the hydrodynamic derivative expansion. In condensed matter physics, it is referred to as "Hall viscosity". We consider a simple holographic realization of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using techniques of fluid/gravity correspondence, we uncover that the holographic fluid possesses a nonzero Hall viscosity, whose value only depends on the near-horizon region of the background. We also write down a Kubo's formula for the Hall viscosity. We confirm our results by directly computing the Hall viscosity using the formula.
Kovtun, Son and Starinets have conjectured that the viscosity to entropy density ratio η/s is always bounded from below by a universal multiple of i.e., /(4πk B ) for all forms of matter. Mysteriously, the proposed viscosity bound appears to be saturated in all computations done whenever a supergravity dual is available. We consider the near horizon limit of a stack of M2-branes in the grand canonical ensemble at finite R-charge densities, corresponding to non-zero angular momentum in the bulk. The corresponding four-dimensional R-charged black hole in Anti-de Sitter space provides a holographic dual in which various transport coefficients can be calculated. We find that the shear viscosity increases as soon as a background R-charge density is turned on. We numerically compute the few first corrections to the shear viscosity to entropy density ratio η/s and surprisingly discover that up to fourth order all corrections originating from a non-zero chemical potential vanish, leaving the bound saturated. This is a sharp signal in favor of the saturation of the viscosity bound for event horizons even in the presence of some finite background field strength. We discuss implications of this observation for the conjectured bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.