The separation of ethane from ethylene is of prime importance in the purification of chemical feedstocks for industrial manufacturing. However, differentiating these compounds is notoriously difficult due to their similar physicochemical properties. High-performance porous adsorbents provide a solution. Conventional adsorbents trap ethylene in preference to ethane, but this incurs multiple steps in separation processes. Alternatively, high-purity ethylene can be obtained in a single step if the adsorbent preferentially adsorbs ethane over ethylene. We herein report a metal−organic framework, MUF-15 (MUF, Massey University Framework), constructed from inexpensive precursors that sequesters ethane from ethane/ethylene mixtures. The productivity of this material is exceptional: 1 kg of MOF produces 14 L of polymer-grade ethylene gas in a single adsorption step starting from an equimolar ethane/ethylene mixture. Computational simulations illustrate the underlying mechanism of guest adsorption. The separation performance was assessed by measuring multicomponent breakthrough curves, which illustrate that the separation performance is maintained over a wide range of feed compositions and operating pressures. MUF-15 is robust, maintains its performance in the presence of acetylene, and is easily regenerated by purging with inert gas or by placing under reduced pressure.
Efficient and sustainable methods for carbon dioxide capture are highly sought after. Mature technologies involve chemical reactions that absorb CO2, but they have many drawbacks. Energy-efficient alternatives may be realised by porous physisorbents with void spaces that are complementary in size and electrostatic potential to molecular CO2. Here, we present a robust, recyclable and inexpensive adsorbent termed MUF-16. This metal-organic framework captures CO2 with a high affinity in its one-dimensional channels, as determined by adsorption isotherms, X-ray crystallography and density-functional theory calculations. Its low affinity for other competing gases delivers high selectivity for the adsorption of CO2 over methane, acetylene, ethylene, ethane, propylene and propane. For equimolar mixtures of CO2/CH4 and CO2/C2H2, the selectivity is 6690 and 510, respectively. Breakthrough gas separations under dynamic conditions benefit from short time lags in the elution of the weakly-adsorbed component to deliver high-purity hydrocarbon products, including pure methane and acetylene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.