Developing particle-in-cell (PIC) methods using finite element basis sets, and without auxiliary divergence cleaning methods, was a long-standing problem until recently. It was shown that if consistent spatial basis functions are used, one can indeed create a methodology that was charge conserving, albeit using a leapfrog time stepping method. While this is a significant advance, leapfrog schemes are only conditionally stable and time step sizes are closely tied to the underlying mesh. Ideally, to take full advantage of advances in finite element methods (FEMs), one needs a charge conserving PIC methodology that is agnostic to the time stepping method. This is the principal contribution of this paper. In what follows, we shall develop this methodology, prove that both charge and Gauss' laws are discretely satisfied at every time step, provide the necessary details to implement this methodology for both the wave equation FEM and Maxwell solver FEM, and finally demonstrate its efficacy on a suite of test problems. The method will be demonstrated by single particle evolution, non-neutral beams with space-charge, and adiabatic expansion of a neutral plasma, where the Debye length has been resolved, and real mass ratios are used.
The state of art of charge-conserving electromagnetic finite element particle-in-cell has grown by leaps and bounds in the past few years. These advances have primarily been achieved for leap-frog time stepping schemes for Maxwell solvers, in large part, due to the method strictly following the proper space for representing fields, charges, and measuring currents. Unfortunately, leap-frog based solvers (and their other incarnations) are only conditionally stable. Recent advances have made Electromagnetic Finite Element Particle-in-Cell (EM-FEMPIC) methods built around unconditionally stable time stepping schemes were shown to conserve charge. Together with the use of a quasi-Helmholtz decomposition, these methods were both unconditionally stable and satisfied Gauss' Laws to machine precision. However, this architecture was developed for systems with explicit particle integrators where fields and velocities were off by a time step. While completely self-consistent methods exist in the literature, they follow the classic rubric: collect a system of first order differential equations (Maxwell and Newton equations) and use an integrator to solve the combined system. These methods suffer from the same side-effect as earlier-they are conditionally stable. Here we propose a different approach; we pair an unconditionally stable Maxwell solver to an exponential predictor-corrector method for Newton's equations. As we will show via numerical experiments, the proposed method conserves energy within a PIC scheme, has an unconditionally stable EM solve, solves Newton's equations to much higher accuracy than a traditional Boris solver and conserves charge to machine precision. We further demonstrate benefits compared to other polynomial methods to solve Newton's equations, like the well known Boris push.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.