In this paper, we have defined a novel task of affective feedback synthesis that deals with generating feedback for input text and corresponding image in a similar way as humans respond towards the multimodal data. A feedback synthesis system has been proposed and trained using ground-truth human comments along with image-text input. We have also constructed a large-scale dataset consisting of image, text, Twitter user comments, and the number of likes for the comments by crawling the news articles through Twitter feeds. The proposed system extracts textual features using a transformer-based textual encoder while the visual features have been extracted using a Faster region-based convolutional neural networks model. The textual and visual features have been concatenated to construct the multimodal features using which the decoder synthesizes the feedback. We have compared the results of the proposed system with the baseline models using quantitative and qualitative measures. The synthesized feedbacks have been analyzed using automatic and human evaluation. They have been found to be semantically similar to the ground-truth comments and relevant to the given text-image input.
In this paper, we have defined a novel task of affective feedback synthesis that deals with generating feedback for input text & corresponding image in a similar way as humans respond towards the multimodal data. A feedback synthesis system has been proposed and trained using ground-truth human comments along with image-text input. We have also constructed a large-scale dataset consisting of image, text, Twitter user comments, and the number of likes for the comments by crawling the news articles through Twitter feeds. The proposed system extracts textual features using a transformer-based textual encoder while the visual features have been extracted using a Faster region-based convolutional neural networks model. The textual and visual features have been concatenated to construct the multimodal features using which the decoder synthesizes the feedback. We have compared the results of the proposed system with the baseline models using quantitative and qualitative measures. The generated feedbacks have been analyzed using automatic and human evaluation. They have been found to be semantically similar to the ground-truth comments and relevant to the given text-image input.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.