We discuss the application of indirect learning methods in zero-sum and identical payoff learning automata games. We propose a novel decentralized version of the well-known pursuit learning algorithm. Such a decentralized algorithm has significant computational advantages over its centralized counterpart. The theoretical study of such a decentralized algorithm requires the analysis to be carried out in a nonstationary environment. We use a novel bootstrapping argument to prove the convergence of the algorithm. To our knowledge, this is the first time that such analysis has been carried out for zero-sum and identical payoff games. Extensive simulation studies are reported, which demonstrate the proposed algorithm's fast and accurate convergence in a variety of game scenarios. We also introduce the framework of partial communication in the context of identical payoff games of learning automata. In such games, the automata may not communicate with each other or may communicate selectively. This comprehensive framework has the capability to model both centralized and decentralized games discussed in this paper.
In this paper, we use identical-payoff games of reinforcement learning agents as a framework to solve complex multi-criteria optimization problem of watershed management. Multiple analytical criteria are used to assess design decisions for creating a distributed network of wetlands in the watershed. Decentralized game algorithms of reinforcement learning agents as well as a genetic algorithm based method are used for the analysis. Simulation studies are presented which compare the efficiency of the reinforcement learning approaches with a multiobjective genetic algorithm-based approach.
Estimator algorithms in learning automata are useful tools for adaptive, real-time optimization in computer science and engineering applications. In this paper we investigate theoretical convergence properties for a special case of estimator algorithmsthe pursuit learning algorithm. We identify and fill a gap in existing proofs of probabilistic convergence for pursuit learning. It is tradition to take the pursuit learning tuning parameter to be fixed in practical applications, but our proof sheds light on the importance of a vanishing sequence of tuning parameters in a theoretical convergence analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.