The prediction and the optimization of the rate of penetration (ROP), an important measure of drilling performance, have increasingly generated great interest. Several empirical techniques have been explored in the literature for the prediction and the optimization of ROP. In this study, four commonly used artificial intelligence (AI) algorithms are explored for the prediction of ROP based on the hydromechanical specific energy (HMSE) ROP model parameters. The AIs explored are the artificial neural network (ANN), extreme learning machine (ELM), support vector regression (SVR), and least-square support vector regression (LS-SVR). All the algorithms provided results with accuracy within acceptable range. The utilization of HMSE in selecting drilling variables for the prediction models provided an improved and consistent methodology of predicting ROP with drilling efficiency optimization objectives. This is valuable from an operational point of view, because it provides a reference point for measuring drilling efficiency and performance of the drilling process in terms of energy input and corresponding output in terms of ROP. The real-time drilling data utilized are must-haves, easily acquired, accessible, and controllable during drilling operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.