Anterior cruciate ligament reconstructive surgery can restore biomechanical stability, however, such surgery cannot reliably prevent the onset of post-traumatic osteoarthritis. The aim of this study was to elucidate the molecular response that occurs within the menisci following a surgical injury that allows bleeding into the joint space, and then to investigate the effect of dexamethasone (DEX) on this molecular response. Cell viability studies following acute controlled exposure to blood and blood plus DEX were also conducted. Forty-eight New Zealand white rabbits were randomly allocated into control, sham, surgical, and surgical + DEX groups (each group n = 6). Animals were sacrificed at 48 h and 9 weeks, and menisci were harvested. The messenger RNA (mRNA) expression levels for key inflammatory, and degradative proteins, as well as mRNA levels for autophagy pathway molecules were quantified, and statistically significant changes were described. Meniscal cell viability was calculated by incubating groups of medial and lateral menisci in autologous blood, or autologous blood plus DEX for 48 h (each group n = 4; total of eight medial and eight lateral menisci), and then conducting a histological live/dead assay. Results indicated a significant reduction in only medial meniscal cell viability when the tissue was exposed to blood in combination with DEX. A single administration of DEX following surgery significantly suppresses the elevated molecular expression for key inflammatory and degradative markers within menisci at 48 h and 9 weeks post-surgery. In vitro, autologous blood did not affect cell viability, but addition of DEX uniquely impacted the medial menisci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.