Controlled delivery of multiple therapeutic agents can be considered as an effective approach in skin tissue engineering. In this study, recombinant human epidermal growth factor (rhEGF) and recombinant human basic fibroblast growth factor (rhbFGF) encapsulated in PLGA microspheres were loaded in hybrid scaffolds of PLGA and PEO. The scaffolds with various formulations were fabricated through electrospinning in order to maintain dual, individual or different release rate of rhEGF and rhbFGF. Morphological, physical and mechanical properties of the scaffold were investigated. The scaffold possessed uniform morphology with an average diameter of 280 nm for PLGA and 760 nm for PEO nanofibers. Furthermore, the mechanical properties of the scaffolds were shown to be akin to those of human skin. Bioactivity of the scaffolds for human skin fibroblasts was evaluated. The HSF acquired significant proliferation and well-spread morphology on the scaffolds particularly in the case of different release rate of rhEGF and rhbFGF which implies the synergistic effect of the growth factors. Additionally, collagen and elastin gene expression was significantly up-regulated in the HSF seeded on the scaffolds in the case of individual delivery of rhEGF and dual delivery of rhEGF and rhbFGF. In conclusion, the prepared scaffolds as a suitable supportive substrate and multiple growth factor delivery system can find extensive utilization in skin tissue engineering.
The objective of this study was to prepare poly lactic-co-glycolic acid (PLGA)-based microparticles as potential carriers for recombinant human epidermal growth factor (rhEGF). In order to optimize characteristic parameters of protein-loaded microspheres, bovine serum albumin (BSA) was selected as the model protein. To reduce burst release as a common problem of microspheres, a proper alteration in the particle composition was used, such as addition of poly vinyl alcohol and changes in initial drug loading. The effects of these parameters on particle size, encapsulation efficiency and in vitro release kinetics of BSA in PLGA microspheres were investigated using a Box-Behnken response surface methodology. The biological activity of the released rhEGF was assessed using human skin fibroblasts cell proliferation assay. The prepared rhEGF-loaded microspheres had an average size of 6.44 ± 2.45 µm, encapsulation efficiency of 97.04 ± 1.13%, burst release of 13.06 ± 1.35% and cumulative release of 22.56 ± 2.41%. The proliferation of human skin fibroblast cells cultivated with rhEGF releasate of microspheres was similar to that of pure rhEGF, indicating the biological activity of released protein confirming the stability of rhEGF during microsphere preparation. These results are in agreement with the purpose of our study to prepare rhEGF-entrapped PLGA microparticles with optimized characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.