Oxidative and nitrosative stress play a key role in the pathogenesis of diabetic neuropathy, but the mechanisms remain unidentified. Here we provide evidence that poly(ADP-ribose) polymerase (PARP) activation, a downstream effector of oxidant-induced DNA damage, is an obligatory step in functional and metabolic changes in the diabetic nerve. PARP-deficient (PARP ؊/؊ ) mice were protected from both diabetic and galactose-induced motor and sensory nerve conduction slowing and nerve energy failure that were clearly manifest in the wild-type (PARP ؉/؉ ) diabetic or galactose-fed mice. Two structurally unrelated PARP inhibitors, 3-aminobenzamide and 1,5-isoquinolinediol, reversed established nerve blood flow and conduction deficits and energy failure in streptozotocin-induced diabetic rats. Sciatic nerve immunohistochemistry revealed enhanced poly(ADP-ribosyl)ation in all experimental groups manifesting neuropathic changes. Poly(ADP-ribose) accumulation was localized in both endothelial and Schwann cells. Thus, the current work identifies PARP activation as an important mechanism in diabetic neuropathy and provides the first evidence for the potential therapeutic value of PARP inhibitors in this devastating complication of diabetes. Diabetes 53: 711-720, 2004 D iabetic distal symmetric sensorimotor polyneuropathy affects up to 60 -70% of diabetic patients and is the leading cause of foot ulceration and amputation (1). Improved blood glucose control reduces the risk of peripheral diabetic neuropathy (PDN), thereby implicating hyperglycemia as a leading causative factor. Diabetic hyperglycemia causes PDN via several mechanisms, among which increased aldose reductase (AR) activity (2-5), nonenzymatic glycation/glycoxidation (6,7), and activation of protein kinase C (2,8) are the best studied. All three mechanisms contribute to enhanced oxidative and nitrosative stress (4,5,7,9 -11) resulting from imbalance between production and neutralization of reactive oxygen species. Enhanced oxidative stress has been documented in peripheral nerve (4,5,8,(12)(13)(14), dorsal root and sympathetic ganglia (15), and vasculature (16,17) of the peripheral nervous system and has been implicated in neurovascular dysfunction and motor and sensory nerve conduction velocity (MNCV and SNCV) deficits, impaired neurotrophic support, nerve metabolic and signal transduction changes, and morphologic abnormalities characteristic for diabetes (4,5,12,14,16 -20). Evidence for the pathophysiologic role of reactive nitrogen species in PDN is also emerging (16,21).The question of how oxidative and nitrosative stress causes PDN remains open. We explored the role for poly(ADP-ribose) (PAR) polymerase (PARP-1; EC 2.4.2.30), a nuclear enzyme that is activated by oxidant-induced DNA single-strand breakage and transfers ADP-ribose residues from NAD ϩ to nuclear proteins (22-25). PARP-1 is present in both endothelial cells (22,23) and Schwann cells of the peripheral nerve (26). PARP-1 activation is clearly manifest in diabetes and contributes to diabetic end...
The study addressed the role for aldose reductase (AR) in 1) retinal oxidative stress and vascular endothelial growth factor (VEGF) overexpression in early diabetes, and 2) high glucose-induced oxidative stress in retinal endothelial cells. In vivo experiments were performed on control rats and diabetic rats treated with or without low or high dose of the AR inhibitor (ARI) fidarestat (2 or 16 mg ⅐ kg ؊1 ⅐ day ؊1 ). In vitro studies were performed on bovine retinal endothelial cells (BREC) cultured in either 5 or 30 mmol/l glucose with or without 1 mol/l fidarestat. Intracellular reactive oxygen species were assessed using the 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate (H 2 DCFDA) probe and flow cytometry. Both low and high doses of fidarestat (i.e., the doses that partially and completely inhibited sorbitol pathway hyperactivity) arrested diabetesinduced retinal lipid peroxidation. This was achieved due to upregulation of the key antioxidative defense enzyme activities rather than changes in reduced glutathione, oxidized glutathione, ascorbate and dehydroascorbate concentrations, and the glutathione and ascorbate redox states. Diabetes-associated 2.1-fold VEGF protein overexpression (enzyme-linked immunosorbent assay; ELISA) was dose-dependently prevented by fidarestat, whereas total VEGF mRNA and VEGF-164 mRNA (RT-PCR) abundance were not affected by either diabetes or the ARI. In BREC, fidarestat corrected hyperglycemiainduced increase in H 2 DCFDA fluorescence but not oxidative stress caused by three different pro-oxidants in normoglycemic conditions. In conclusion, increased AR activity contributes to retinal oxidative stress and VEGF protein overexpression in early diabetes. The findings justify the rationale for evaluation of fidarestat on diabetic retinopathy. Diabetes 52:864 -871, 2003
Nitrosative stress, that is, enhanced peroxynitrite formation, has been documented in both experimental and clinical diabetic neuropathy (DN), but its pathogenetic role remains unexplored. This study evaluated the role for nitrosative stress in two animal models of type 1 diabetes: streptozotocin-diabetic mice and diabetic NOD mice. Control (C) and streptozotocin-diabetic (D) mice were treated with and without the potent peroxynitrite decomposition catalyst FP15 (5 mg kg(-1) d(-1)) for 1 wk after 8 wk without treatment. Sciatic nerve nitrotyrosine (a marker of peroxynitrite-induced injury) and poly(ADP-ribose) immunoreactivities were present in D and absent in C and D+FP15. FP15 treatment corrected sciatic motor and hind-limb digital sensory nerve conduction deficits and sciatic nerve energy state in D, without affecting those variables in C. Nerve glucose and sorbitol pathway intermediate concentrations were similarly elevated in D and D+FP15 vs C. In diabetic NOD mice, a 7-day treatment with either 1 or 3 mg kg(-1) d(-1) FP15 reversed increased tail-flick latency (a sign of reduced pain sensitivity); the effect of the higher dose was significant as early as 3 days after beginning of the treatment. In conclusion, nitrosative stress plays a major role in DN in, at least, type 1 diabetes. This provides the rationale for development of agents counteracting peroxynitrite formation and promoting peroxynitrite decomposition, and their evaluation in DN.
We hypothesize that poly (ADP-ribosyl)ation, that is, poly (ADP-ribose) polymerase (PARP)-dependent transfer of ADP-ribose moieties from NAD to nuclear proteins, plays a role in diabetic nephropathy. We evaluated whether PARP activation is present and whether two unrelated PARP inhibitors, 3-aminobenzamide (ABA) and 1,5-isoquinolinediol (ISO), counteract overexpression of endothelin-1 (ET-1) and ET receptors in the renal cortex in short-term diabetes. The studies were performed in control rats and streptozotocin-diabetic rats treated with/without ABA or ISO (30 and 3 mg x kg(-1) x day(-1), intraperitoneally, for 2 weeks after 2 weeks of diabetes). Poly (ADP-ribose) immunoreactivity was increased in tubuli, but not glomeruli, of diabetic rats and this increase was corrected by ISO, whereas ABA had a weaker effect. ET-1 concentration (ELISA) was increased in diabetic rats, and this elevation was blunted by ISO. ET-1, ET(A), and ET(B) mRNA (ribonuclease protection assay), but not ET-3 mRNA (RT/PCR), abundance was increased in diabetic rats, and three variables were, at least, partially corrected by ISO. ABA produced a trend towards normalization of ET-1 concentration and ET-1, ET(A), and ET(B) mRNA abundance, but the differences with untreated diabetic group were not significant. Poly(ADP-ribosyl)ation is involved in diabetes-induced renal overexpression of ET-1 and ET receptors. PARP inhibitors could provide a novel therapeutic approach for diabetic complications including nephropathy, and other diseases that involve the endothelin system.
The etiology of painful diabetic neuropathy is poorly understood, but may result from neuronal hyperexcitability secondary to alterations of Ca2+ signaling in sensory neurons. The naturally occurring amino acid taurine functions as an osmolyte, antioxidant, Ca2+ modulator, inhibitory neurotransmitter, and analgesic such that its depletion in diabetes may predispose one to neuronal hyperexcitability and pain. This study reports the effects of taurine replacement on hyperalgesia and sensory neuron Ca2+ homeostasis in streptozotocin-diabetic (STZ-D) rats. Nondiabetic and STZ-D rats were treated with a 2% taurine-supplemented diet for 6-12 wk. Thermal hyperalgesia and mechanical allodynia were determined by measuring hindpaw withdrawal latency to radiant heat and the withdrawal threshold to the von Frey anesthesiometer. Intracellular Ca2+ signaling was explored in neurons from L4-L6 dorsal root ganglia (DRG), using fura 2 fluorescence. Taurine replacement of diabetic rats attenuated deficits of nerve conduction and prevented reductions of mechanical and thermal withdrawal threshold and latency, respectively. In small DRG sensory neurons from diabetic rats, recovery of intracellular Ca2+ concentration ([Ca2+]i) in response to KCl was slowed and 73% corrected by taurine. The amplitudes of caffeine and ATP-induced [Ca2+]i transients were decreased by 47 and 27% (P < 0.05), respectively, in diabetic rat DRG sensory neurons and corrected by 74 and 93% (P < 0.05), respectively, by taurine replacement. These data indicate that taurine is important in the regulation of neuronal Ca2+ signaling and that taurine deficiency may predispose one to nerve hyperexcitability and pain, complicating diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.