Purpose. This study highlights the specific and accurate methods for forecasting prices of commonly consumed grains or legumes in Nigeria based on data from January 2017 to June 2020. Methodology / approach. Different models that include autoregressive integrated moving average (ARIMA), artificial neural networks (ANN), seasonal decomposition of time series by loess method (STLM), and a combination of these three models (hybrid model) were proposed to forecast the sample grain price data. This study uses price data on widely consumed grains, such as white maize, local rice, imported rice, and white beans, in Nigeria from January 2017 to June 2020. Results. Our result indicates that ARIMA is the best applicable model for white maize and imported rice because it is well fitted to stationary data, as demonstrated in the sample period. The STLM is more appropriate in forecasting white beans. As white beans are highly seasonal in Nigeria, it further explains why the STLM model fits better in forecasting prices. The production of local rice is inconsistent in Nigeria because of erratic rainfall and stiff competition from the importation of rice from other countries. Therefore, and consistent with the analysis, the hybrid model is the best model applicable to local rice because it captures varying trends exhibited in the data. Originality / scientific novelty. This study suggests most accurate forecasting techniques for specific agricultural commodities in sub-Saharan African countries. It considers forecasting prices of commonly consumed grains and legumes in Nigeria and traded worldwide, such as imported rice, local rice, beans, and maize. Practical value / implications. The study highlights the importance of appropriate forecasts for policymakers, producers, and consumers to enhance better decision making and serve as an underlying incentive to guide the allocation of financial resources to the agricultural sector, which determines the structure and degree of sectoral growth.
Purpose. This study highlights the specific and accurate methods for forecasting prices of commonly consumed grains or legumes in Nigeria based on data from January 2017 to June 2020. Methodology / approach. Different models that include autoregressive integrated moving average (ARIMA), artificial neural networks (ANN), seasonal decomposition of time series by loess method (STLM), and a combination of these three models (hybrid model) were proposed to forecast the sample grain price data. This study uses price data on widely consumed grains, such as white maize, local rice, imported rice, and white beans, in Nigeria from January 2017 to June 2020. Results. Our result indicates that ARIMA is the best applicable model for white maize and imported rice because it is well fitted to stationary data, as demonstrated in the sample period. The STLM is more appropriate in forecasting white beans. As white beans are highly seasonal in Nigeria, it further explains why the STLM model fits better in forecasting prices. The production of local rice is inconsistent in Nigeria because of erratic rainfall and stiff competition from the importation of rice from other countries. Therefore, and consistent with the analysis, the hybrid model is the best model applicable to local rice because it captures varying trends exhibited in the data. Originality / scientific novelty. This study suggests most accurate forecasting techniques for specific agricultural commodities in sub-Saharan African countries. It considers forecasting prices of commonly consumed grains and legumes in Nigeria and traded worldwide, such as imported rice, local rice, beans, and maize. Practical value / implications. The study highlights the importance of appropriate forecasts for policymakers, producers, and consumers to enhance better decision making and serve as an underlying incentive to guide the allocation of financial resources to the agricultural sector, which determines the structure and degree of sectoral growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.