BackgroundDendritic cells (DCs) are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. Interestingly, microenvironment conditions such as those present in tumor settings might induce a DC phenotype that is poorly immunogenic and with the capability of promoting angiogenesis. We hypothesize that this plasticity may be caused not only by the action of specific cytokines or growth factors but also by the properties of the surfaces with which they interact, such as extracellular matrix (ECM) components.ResultsHerewith we studied the effect of different surfaces and soluble factors on the biology of DCs. To accomplish this, we cultured murine myeloid(m) DCs on surfaces coated with fibronectin, collagen I, gelatin, and Matrigel using poly-D-lysine and polystyrene as non-biological surfaces. Further, we cultured these cells in the presence of regular DC medium (RPMI 10% FBS) or commercially available endothelial medium (EGM-2). We determined that mDCs could be kept in culture up to 3 weeks in these conditions, but only in the presence of GM-CSF. We were able to determine that long-term DC cultures produce an array of angiogenic factors, and that some of these cultures still retain the capability to induce T cell responses.ConclusionsAltogether these data indicate that in order to design DC-based vaccines or treatments focused on changing the phenotype of DCs associated with diseases such as cancer or atherosclerosis, it becomes necessary to fully investigate the microenvironment in which these cells are present or will be delivered.
Dendritic cells (DCs) are professional antigen presenting cells (APCs) found in peripheral tissues and in immunological organs such as thymus, bone marrow, spleen, lymph nodes and Peyer's patches [1][2][3] . DCs present in peripheral tissues sample the organism for the presence of antigens, which they take up, process and present in their surface in the context of major histocompatibility molecules (MHC). Then, antigen-loaded DCs migrate to immunological organs where they present the processed antigen to T lymphocytes triggering specific immune responses. One way to evaluate the migratory capabilities of DCs is to label them with fluorescent dyes 4 .Herewith we demonstrate the use of Qdot fluorescent nanocrystals to label murine bone marrow-derived DC. The advantage of this labeling is that Qdot nanocrystals possess stable and long lasting fluorescence that make them ideal for detecting labeled cells in recovered tissues. To accomplish this, first cells will be recovered from murine bone marrows and cultured for 8 days in the presence of granulocyte macrophagecolony stimulating factor in order to induce DC differentiation. These cells will be then labeled with fluorescent Qdots by short in vitro incubation. Stained cells can be visualized with a fluorescent microscopy. Cells can be injected into experimental animals at this point or can be into mature cells upon in vitro incubation with inflammatory stimuli. In our hands, DC maturation did not determine loss of fluorescent signal nor does Qdot staining affect the biological properties of DCs. Upon injection, these cells can be identified in immune organs by fluorescent microscopy following typical dissection and fixation procedures. Video LinkThe video component of this article can be found at https://www.jove.com/video/2785/ Protocol 1. Dissection of mouse femurs and tibiae and culture of bone marrow cells 1. Sacrifice 2 mice by CO 2 asphyxiation and carefully dissect tibias and femurs without cutting the bone ends. 2. Clean the bones from all the attached tissues by using tissue paper. Be careful not to break the bones. 3. Sterilize the bones by immersion in 70% ethanol for 10 min in a 35 mm Petri dish. From this moment, work inside a biosafety hood to avoid contamination of the cell cultures. 4. Recover the bones from the ethanol and let them air dry for 5 min in a Petri dish inside the biosafety cabinet. 5. Cut the femurs in half, and the tibia by its thinnest tip. Infuse the inside of the bone with 1 ml of RPMI medium (without serum but with antibiotics) using a sterile syringe on a sterile Petri dish. 6. The cell suspension is collected and washed 2X in RPMI medium by 10 min centrifugation in a 15 ml centrifuge tube at 1,100 RPM in a refrigerated centrifuge (4°C) with a swinging bucket rotor. 7. After the last wash, resuspend the cells in 2 ml of ACK lysis buffer and incubate for 5 min at room temperature in order to eliminate red blood cells. 8. Add 13 ml of RPMI with 10% FBS, resuspend and wash 2X in this medium with the same settings as describe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.