Tsunami events in antiquity had a profound influence on coastal societies. Six thousand years of historical records and geological data show that tsunamis are a common phenomenon affecting the eastern Mediterranean coastline. However, the possible impact of older tsunamis on prehistoric societies has not been investigated. Here we report, based on optically stimulated luminescence chronology, the earliest documented Holocene tsunami event, between 9.91 to 9.29 ka (kilo-annum), from the eastern Mediterranean at Dor, Israel. Tsunami debris from the early Neolithic is composed of marine sand embedded within fresh-brackish wetland deposits. Global and local sea-level curves for the period, 9.91–9.29 ka, as well as surface elevation reconstructions, show that the tsunami had a run-up of at least ~16 m and traveled between 3.5 to 1.5 km inland from the palaeo-coastline. Submerged slump scars on the continental slope, 16 km west of Dor, point to the nearby “Dor-complex” as a likely cause. The near absence of Pre-Pottery Neolithic A-B archaeological sites (11.70–9.80 cal. ka) suggest these sites were removed by the tsunami, whereas younger, late Pre-Pottery Neolithic B-C (9.25–8.35 cal. ka) and later Pottery-Neolithic sites (8.25–7.80 cal. ka) indicate resettlement following the event. The large run-up of this event highlights the disruptive impact of tsunamis on past societies along the Levantine coast.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Seafloor geoacoustic properties are important in determining sound propagation in the marine environment, which broadly affects sub-sea activities. However, geoacoustic investigation of the deep seafloor, which is required by the recent expansion of deep-water operations, is challenging. This paper presents a methodology for estimating the seafloor sound speed, c0, and a sub-bottom velocity gradient, K, in a relatively deep-water-compacting (~1000 m) passive-margin setting, based on standard commercial 2D seismic data. Here we study the seafloor of the southeastern Mediterranean margin based on data from three commercial seismic profiles, which were acquired using a 7.2 km-long horizontal receiver array. The estimation applies a geoacoustic inversion of the wide-angle reflections and the travel times of the head waves of bending rays. Under the assumption of a constant positive K, the geoacoustic inversion converges to a unique set of parameters that best satisfy the data. The analysis of 24 measurement locations revealed an increase in the average estimates of c0 from 1537 ± 13 m s−1 to 1613 ± 12 m s−1 for seafloor depths between ~1150 m and ~1350 m. K ranged between 0.75 and 0.85 m s−1 with an average of 0.80 ± 0.035 s−1. The parameters were consistent across the different locations and seismic lines and they match the values that were obtained through depth-migration-velocity analysis and empiric relations, thereby validating our estimation methodology.
<p>Our study comprises a high-resolution multi-proxy investigation of a ~6 m long piston core DOR280, sampled from the headscarp of a mapped landslide on the upper continental slope (280 m water depth) at the Dor Disturbance area, northern central Israel. The core retrieved the sediment sequence overlaying the sliding plane of the last major landsliding event. Benthic foraminiferal assemblages and taphonomy, alongside particle size distribution, were used to determine the provenance, transport distance, and reoccurrence time of mass transport events in this area. Radiocarbon ages were measured along the core revealed an age of ~600 Cal Yrs. B.P. for the core base, suggesting unexpectedly high average sedimentation rate of ~10 m/kyr, which is highest at the core top meter. Computed Tomography (CT) of DOR280 shows two alternating sedimentary facies: &#160;5 &#8211; 208 cm thick Non-Laminated (NL) and 5 &#8211; 37 cm thick Laminated (L). The L-facies sequences also include 0 &#8211; 4 cm thick High-Density Laminas (HDL). The NL-facies intervals consist of unimodal fine-sediments dominated by clay minerals. Their foraminiferal assemblage is dominated by autochthonous species (e.g. Uvigerina spp.) and low percentage of broken shells. This indicates that the NL-facies represents mostly in-situ hemipelagic deposition. The L-facies intervals also record unimodal size-distribution of fine-sediments dominated by clay minerals, but their foraminiferal assemblages are dominated by allochthonous species (e.g. Ammonia spp.) and high percentage of broken shells, indicating a contribution of transported sediments, originated from mid-shelf habitats. The HDL-facies consist of bimodal sediments comprised of fine silty-clay (~5 &#181;m) and coarse silty components (~40 &#181;m), dominated by quartz and calcite; as well as poorly preserved and broken shells of allochthonous foraminifera species. Thus, the HDL represent significant contribution of mid-shelf-origin sediments and are interpreted as turbidite-like mass transport events.</p><p>The temporal distribution of the 27 HDL events is nonrandom, revealing clusters at 59 &#177; 14 (n=9), 134 &#177; 12 (n=8), 453 &#177; 21 (n=4) and 641 &#177; 10 (n=4) years before present. These findings show prevailing cross-shelf and down slope sediments transport in the Dor Disturbance area. The HDL events can be triggered by large remote earthquakes (> 6.5), tsunami, winter storms or by sediment load that coincided with high-stand Nilotic episodes. However, mechanisms controlling the observed recent mass transport in the Dor Disturbance area still need to be studied.</p><p>DOR280 is the first piston core studied in high resolution at the upper continental slope of of the Isreali offshore. The use of benthic foraminifera assemblages and their shells taphonomy reveals the transported sediments within the core and enables an assessment regarding their source. The findings reported here identified much higher sediments accumulation rate than previously known and thus have implications to the evaluation and mitigation of marine geo-hazard in the studied area.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.