Natural products with semi-synthetic molecules displays higher biological activities, and creates new biological properties for the treatment of diseases. Although, natural products like artemisinin have been used as a traditional medicine over thousands of years, structure and biological properties of many natural products were investigated in the 20th century. Design and synthesis of new biologically active compounds including natural products have very critical roles to find novel drug candidates. Herein, novel thiophene/furan bridge artemisinin derivatives were synthesized by starting from artemisinin. Firstly, benzothiophene derivatives are synthesized, then Steglich esterification reactions give the new artemisinin hybrid molecules with moderate to high yields.
In present, new artemisinin-based organic compounds (1-6) are designed and synthesized in excellent yields (up to 97 %) via Steglich Esterification reactions. All new artemisinin derivatives are tested as anode catalysts for hydrazine electrooxidation reactions with electrochemical methods in 1 M KOH/ 0.5 M N 2 H 4 solution. Hybrid molecule 1 exhibits the best catalytic activity in hydrazine electrooxidation reaction with 2.28 mA cm À 2 value. Moreover, response surface methodology (RSM) is applied to investigate of optimum electrode conditions. By using optimum conditions, hydrazine electrooxidation is obtained as 3.55324 mA cm À 2 . As a result, artemisininbased hybrid compounds may be alternative, and nextgeneration anode catalyst for direct hydrazine fuel cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.