Grünbaum and Malkevitch proved that the shortness coefficient of cyclically 4-edge-connected cubic planar graphs is at most 76/77. Recently, this was improved to 359/366 (< 52/53) and the question was raised whether this can be strengthened to 41/42, a natural bound inferred from one of the Faulkner-Younger graphs. We prove that the shortness coefficient of cyclically 4-edge-connected cubic planar graphs is at most 37/38 and that we also get the same value for cyclically 4-edge-connected cubic graphs of genus g for any prescribed genus g ≥ 0. We also show that 45/46 is an upper bound for the shortness coefficient of cyclically 4-edge-connected cubic graphs of genus g with face lengths bounded above by some constant larger than 22 for any prescribed g ≥ 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.