Developing effective and efficient negotiation mechanisms for real-world applications such as e-business is challenging because negotiations in such a context are characterized by combinatorially complex negotiation spaces, tough deadlines, very limited information about the opponents, and volatile negotiator preferences. Accordingly, practical negotiation systems should be empowered by effective learning mechanisms to acquire dynamic domain knowledge from the possibly changing negotiation contexts. This article illustrates our adaptive negotiation agents, which are underpinned by robust evolutionary learning mechanisms to deal with complex and dynamic negotiation contexts. Our experimental results show that GA-based adaptive negotiation agents outperform a theoretically optimal negotiation mechanism that guarantees Pareto optimal. Our research work opens the door to the development of practical negotiation systems for real-world applications.
SUMMARYIncreasingly scientists are using collections of software tools in their research. These tools are typically used in concert, often necessitating laborious and error-prone manual data reformatting and transfer. We present an intuitive workflow environment to support scientists with their research. The workflow, GPFlow, wraps legacy tools, presenting a high level, interactive web-based front end to scientists. The workflow backend is realized by a commercial grade workflow engine (Windows Workflow Foundation). The workflow model is inspired by spreadsheets and is novel in its support for an intuitive method of interaction enabling experimentation as required by many scientists, e.g. bioinformaticians. We apply GPFlow to two bioinformatics experiments and demonstrate its flexibility and simplicity.
By increasing the degree and sophistication of automation, e-marketplaces will become much more efficient and transparent, and hence more widely adopted by organizations. Negotiation is one of main activities conducted in e-marketplaces, and adaptive negotiation agents can be applied to improve the effectiveness of B2B e-marketplaces. Classical negotiation models have limited use in modern e-marketplaces because these models often assume that complete information about the negotiation spaces is available. This paper illustrates the design and development of adaptive negotiation agents for e-marketplaces. These agents are empowered by the Bayesian learning mechanisms so that they can gradually acquire negotiation knowledge based on their previous encounters with the opponents. Our preliminary experiment shows that the proposed probabilistic negotiation decision making mechanism and the associated data mining approach is effective and efficient in simulated e-marketplaces.
Growing demand for ubiquitous and pervasive computing has triggered a sharp rise in handheld device usage. At the same time, dynamic multimedia data has become accepted as core material which many important applications depend on, despite intensive costs in computation and resources. This paper investigates the suitability and constraints of using handheld devices for such applications. We firstly analyse the capabilities and limitations of current models of handheld devices and advanced features offered by next generation models. We then categorise these applications and discuss the typical requirements of each class. Important issues to be considered include data organisation and management, communication, and input and user interfaces. Finally, we briefly discuss future outlook and identify remaining areas for research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.