This paper presents the design and implementation of a quadcopter capable of payload delivery. A quadcopter is a unique unmanned aerial vehicle which has the capability of vertical takeoff and landing. In this design, the quadcopter was controlled wirelessly from a ground control station using radio frequency. It was modeled mathematically considering its attitude and altitude, and a simulation carried out in MATLAB by designing a proportional Integral Derivative (PID) controller was applied to a mathematical model. The PID controller parameters were then applied to the real system. Finally, the output of the simulation and the prototype were compared both in the presence and absence of disturbances. The results showed that the quadcopter was stable and able to compensate for the external disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.