We reported on the active channel waveguides, formed in novel types of silicate glasses, doped with rare-earth elements, and Zn were investigated. The silicate glass GZ4 with Er 3+ and Yb 3+ content was studied, and the best doping ratio was estimated about luminescent properties. The composition of the glass samples (GZ4) with the content of 0.25 at. % Er 3+ and 5.0 at. % Yb 3+ and Zn 4.0 at. % resp. 5.6 at. % Zn was optimized. This glass was evaluated as the most suitable material for integrated amplifiers in the telecommunication band of 1 530 -1 565 nm. Other samples were prepared with an active channel waveguides and active planar optical power splitter Y with a splitting ratio of 1x2 by two-step ionexchange Na + -Ag + . Diffusion profiles of the created samples were analyzed by the EMA microscope and compared with the near mode-field distribution measurement results. Afterward, the amplification properties of the designed structures were studied, and the differential gain from 1.2 to 1.6 dB (0.48 to 0.64 dB/cm) was achieved by pumping 200 mW at 980 nm.
Two-step field-assisted ion-exchanged waveguides have been fabricated on a glass substrate. The concentration profiles of the exchanged ions were measured with electron microprobe. The waveguides were characterized under scanning electron microscope and optical microscope for the investigation of burying structures. Guiding mode patterns were characterized with near-field measurement, where symmetric profiles were observed for the burying-type waveguide. The refractive index profiles were also measured with a modified end-fire coupling method. The relation between ion concentration profiles and index profiles were compared for the waveguides with different fabrication process.
We reported on the active channel waveguides, formed in novel types of silicate glasses, doped with rare-earth elements, and Zn were investigated. The silicate glass GZ4 with Er 3+ and Yb 3+ content was studied, and the best doping ratio was estimated about luminescent properties. The composition of the glass samples (GZ4) with the content of 0.25 at. % Er 3+ and 5.0 at. % Yb 3+ and Zn 4.0 at. % resp. 5.6 at. % Zn was optimized. This glass was evaluated as the most suitable material for integrated amplifiers in the telecommunication band of 1 530 – 1 565 nm. Other samples were prepared with an active channel waveguides and active planar optical power splitter Y with a splitting ratio of 1x2 by two-step ion-exchange Na + -Ag + . Diffusion profiles of the created samples were analyzed by the EMA microscope and compared with the near mode-field distribution measurement results. Afterward, the amplification properties of the designed structures were studied, and the differential gain from 1.2 to 1.6 dB (0.48 to 0.64 dB/cm) was achieved by pumping 200 mW at 980 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.