A scaled transparent modular model of pressure-swirl (PS) atomizer was prepared from cast PMMA (Poly(methyl methacrylate), Perspex™, Plexiglas™) with the aim to achieve a better understanding of internal flow and subsequent spray formation. Because of use of high-speed imaging and Laser Doppler Anemometry (LDA) the working liquid had to be selected with respect of a refractive index matching (RIM) with the atomizer material. The liquid should be colourless and chemically non-aggressive to the model material with suitable viscosity to achieve the Reynolds number of the internal flow of the original atomizer. Froude number should be high enough to neglect the influence of gravity on the flow. An extensive search for transparent liquids and materials of enlarged models was made with a focus on RIM in performed experiments. Several liquids were chosen, and their chemical effect on PMMA was tested. Despite the successful tests that proved the liquid suit the case, the model material was damaged and the tests proved to be insufficient. For this reason, the tests were modified to better involve the stress of the bolted model. It turned out that a force effect (bolt in the thread, pre-stressed bolt connection) on the material has a significant influence on the acceleration of the chemical effect. The internal flow was examined using a high-speed camera with several liquids.
Nebulizers are commonly used devices for inhalation treatment of various disorders. There are three main categories of medical nebulization technology: jet nebulizers, ultrasound nebulizer, and mesh nebulizer. The mesh nebulizers seem to be very promising since this technology should be able to produce aerosol with precisely determined particle size and is easy to use as well [1]. Aerosol generated from the mesh nebulizer Aerogen Solo was measured in this work. Particle size distribution with a mass median of aerodynamic diameter (MMAD) was determined by two different methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.